Module III

AI representational schemes- Semantic nets, conceptual dependency, scripts, frames, introduction to agent based problem solving, Machine learning-symbol based-a frame work for symbol based learning.

AI representational Schemes

Knowledge Representation

- Problem: represent human knowledge into computationally acceptable language
- Desired Features
 - Exhaustiveness All needed information is in KB.
 - *Modifiability* → new information can be added without sacrificing consistency.
 - *Homomorphic mapping of objects* → information organized in a natural and intuitive fashion
 - Computational Efficiency

Approaches to Problem Solving in AI

- Different views
 - Weak Problem Solvers: To create intelligent systems, we simply need to transform the syntactic form of the start state to match that of the desired goal state.
 - Example: General Problem Solver
 - **Strong Problem Solvers:** To create a system that acts intelligently we must represent world knowledge in a form accessible to the system.
 - Example: expert systems such as MYCIN.
 - **Subsumption Architecture:** "The world is its own model".
 - Genetic algorithms

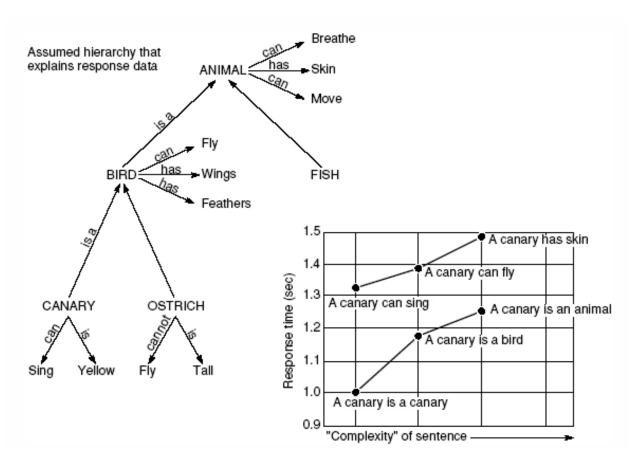
Explicit Representation of World Knowledge

- Logic as a knowledge representation language
 - Propositional Logic
 - Predicate Logic (FOL)

- Semantic networks
- Frames
- Conceptual Dependency

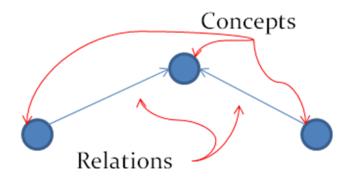
AI Representational Schemes: Associationist Theories of Meaning

- Define the meaning of an object in terms of a network of associations with other objects.
- When humans perceive and reason about an object, the perception is first mapped into a concept.
- This concept is connected through appropriate relationships to other concepts.
- These relationships form an understanding of the properties and behavior of objects.
- For example, through experience, we associate the concept snow with other concepts such as cold, white, snowman, slippery, and ice.
- In addition to their ability to associate concepts, humans also organize their knowledge hierarchically, with information kept at the highest appropriate levels of the taxonomy.
- Collins and Quillian modeled human information storage and management using a semantic network (Figure).
- The structure of this hierarchy was derived from laboratory testing of human subjects.
- The subjects were asked questions about different properties of birds and the response-time varied.
- Graphs are ideal to formalize associationist theories of knowledge.
- Graphs provide a means of explicitly representing relations using arcs and nodes.
- A semantic network represents knowledge as a graph.
- Fig 7.1 Semantic network developed by Collins and Quillian in their research on human information storage and response times (Harmon and King, 1985)



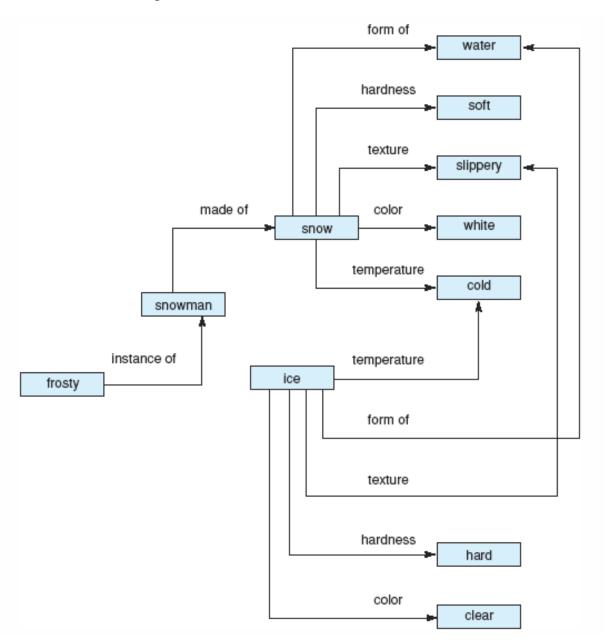
Semantic Networks

- Define objects in terms of their association with other objects
 - e.g. snow, white, snowman, ice, slippery.
- The nodes correspond to facts or concepts, and the arcs to relations or associations between concepts.
- Both nodes and links are generally labeled.
- Represent knowledge as a graph:
- Concepts at lower levels inherit characteristics from their parent concepts.

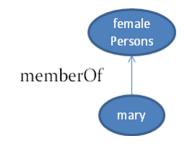


• Concepts at lower levels inherit characteristics from their parent concepts.

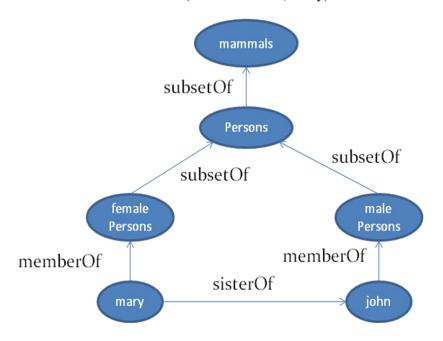
Semantic Network -example



- This network can be used to answer a range of questions about snow, ice, and snowman.
- These inferences are made by following the links to related concepts.
- Semantic networks also implement inheritance;
 - for example, frosty inherits all the properties of snowman.
- Well designed semantic networks are a form of logic.



memberOf(femalePersons, mary)



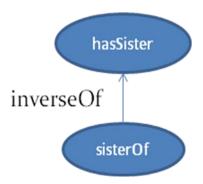
Inference Mechanism

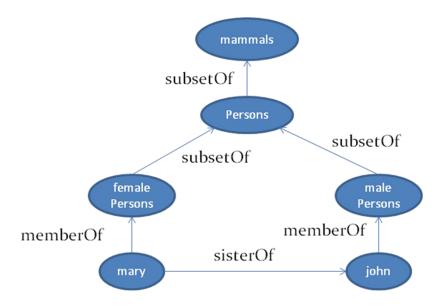
Inheritance

• e.g. Persons by default have 2 legs. How many legs does Mary have? John?

Use of Inverse Links

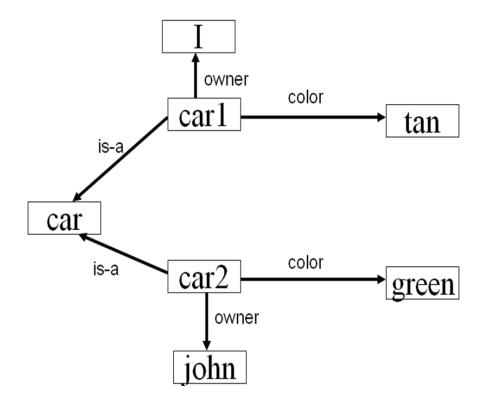
• e.g. hasSister(p, s) and sisterOf(s, p)





Examples of Semantic Net (2)

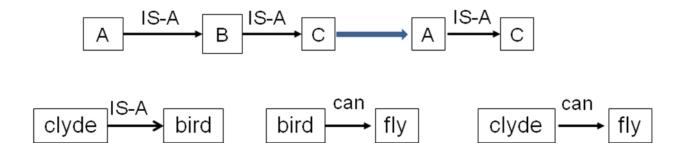
• My car is tan and John's car is green



Inference in a Semantic Net (1)

• Inheritance

- the *is-a* and *instance-of* representation provide a mechanism to implement this.
- Inheritance also provides a means of dealing with default reasoning



Semantic Networks Advantages

- Simple and transparent inference processes.
- Ability to assign default values for categories.
- Ability to include *procedural attachment*.

Semantic Networks - Disadvantages

- Simple query language may be too limiting to express complex queries.
- Does not represent full FOL since it does not provide means to use negation, disjunction, and existential quantification.
- n-ary functions must be mapped onto binary functions.

Standardization of Network Relationships

- Simmons addressed the need for standard relationships by focusing on the case structure of English verbs.
- In this verb-oriented approach, links define the roles played by nouns and noun phrases in the action of the sentence.
- Case relationships include agent, object, instrument, location, and time.
- A sentence is represented as a verb node, with various case links to nodes representing other participants in the action.
- This structure is called a case frame.
- In parsing a sentence, the program finds the verb and retrieves the case frame for that verb from its knowledge base.
- It then binds the values of the agent, object, etc., to the appropriate nodes in the case frame.
- Example: Sarah fixed the chair with glue

agent object chair

Fig 7.5 Case frame representation of the sentence "Sarah fixed the chair with glue."

• These built-in relationships indicate that Sarah is the person doing the fixing and that glue is used to put the chair together.

instrument

glue

• These linguistic relationships are stored in a fashion that is independent of the actual sentence or even the language in which the sentence was expressed.

Conceptual Dependency (CD) theory

- CD theory was developed by Schank in 1973 to represent the meaning of NL sentences.
 - It helps in drawing inferences
 - It is independent of the language
 - CD representation of a sentence is not built using words in the sentence rather built using conceptual primitives which give the intended meanings of words.
- CD provides <u>structures</u> and specific <u>set of primitives</u> from which representation can be built.

Conceptual category

There are four primitive conceptual categories

_	ACT	Actions \	one of the	CD	primitives)	

- PP Objects {Picture Producers}

- AA Modifiers of actions {Action Aiders}

- PA Modifiers of PP's {Picture Aiders}

Primitive ACTs of CD theory

• ATRANS Transfer of an abstract relationship (i.e. give)

Prepared by, Dr.M.Rajeswari, Sahrdaya College of Engineering and Technology

- PTRANS Transfer of the physical location of an object (e.g., go)
- PROPEL Application of physical force to an object (e.g. push)
- MOVEMovement of a body part by its owner (e.g. kick)
- GRASP Grasping of an object by an action (e.g. throw)
- INGEST Ingesting of an object by an animal (e.g. eat)
- EXPEL Expulsion of something from the body of an animal (e.g. cry)
- MTRANS Transfer of mental information (e.g. tell)
- MBUILD Building new information out of old (e.g decide)
- SPEAK Producing of sounds (e.g. say)
- ATTEND Focusing of a sense organ toward a stimulus (e.g. listen)
 - Primitives of meaning
 - 1. Actions
 - 2. Objects
 - 3. Modifiers of actions
 - 4. Modifiers of objects
 - Conceptual syntax rules
 - 1. Built using these primitives
 - 2. Constitute a grammar of meaningful semantic relationships.
 - Conceptual dependency relationships
 - 1. Are defined using the conceptual syntax rules
 - 2. Can be used to construct an internal representation of an english sentence.
- The first conceptual dependency describes the relationship between a subject and its verb and The third describes the verb-object relation in the following figure.

 $PP \Leftrightarrow ACT$ indicates that an actor acts.

PP ⇔PA indicates that an object has a certain attribute.

O ACT \leftarrow PP indicates the object of an action.

ACT—PP indicates the recipient and the donor of an object within an action.

ACT— indicates the direction of an object within an action.

 $\begin{array}{c} \textbf{1} \\ \textbf{ACT} \leftarrow \updownarrow \\ \end{array} \begin{array}{c} \text{indicates the instrumental conceptualization} \\ \text{for an action.} \\ \end{array}$

indicates that conceptualization X caused conceptualization Y. When written with a C this form denotes that X COULD cause Y.

PP← indicates a state change of an object.

PP1 ← PP2 indicates that PP2 is either PART OF or the POSSESSOR OF PP1.

Fig. Basic Conceptual Dependency

Few conventions

- Arrows indicate directions of dependency
- Double arrow indicates two way link between actor and action.

O – for the object case relation

R – for the recipient case relation

P – for past tense

D – destination

• Tense and mode are added.

- Example: past, future, transition etc.
- Schank supplies a list of attachments or modifiers to the relationships.
- A partial list of these includes:

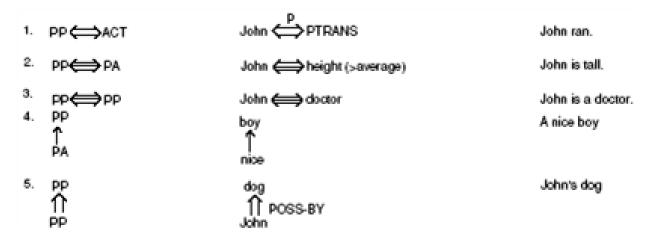
р	past
f	future
t	transition
k	continuing
t_s	start transition
?	interrogative
t,	finish transition
С	conditional
/	negative
njl	present
delta?	timeless

Example:

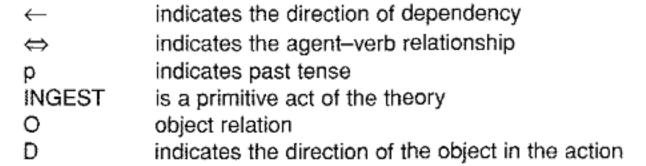
Fig 7.8 Some bacis conceptual dependencies and their use in representing more complex English sentences, adapted from Schank and Colby (1973).

[&]quot;John throws the ball"

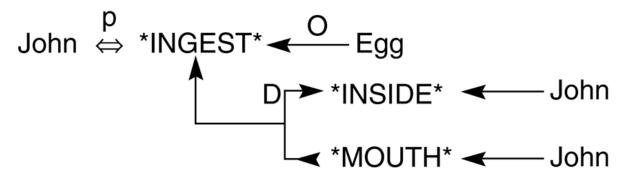
[&]quot;John threw the ball"



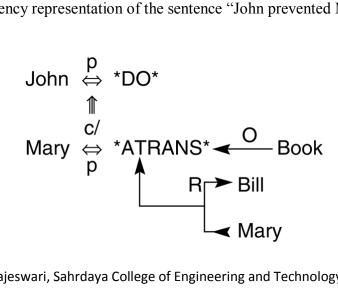
The symbols have the following meanings:



Conceptual dependency representing "John ate the egg"

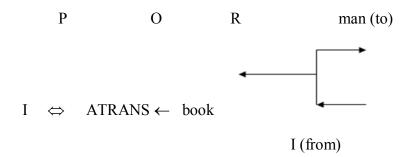


Conceptual dependency representation of the sentence "John prevented Mary from giving a book to Bill"



Prepared by, Dr.M.Rajeswari, Sahrdaya College of Engineering and Technology

- Example
- I gave a book to the man. CD representation is as follows:



- It should be noted that this representation is same for different saying with same meaning. For example
 - I gave the man a book,
 - The man got book from me,
 - The book was given to man by me etc.

Rule 1: $PP \Leftrightarrow ACT$

- It describes the relationship between an actor and the event he or she causes.
 - This is a two-way dependency, since neither actor nor event can be considered primary.
 - The letter P in the dependency link indicates past tense.
- Example: John ran

P

CD Rep: John ⇔ PTRANS

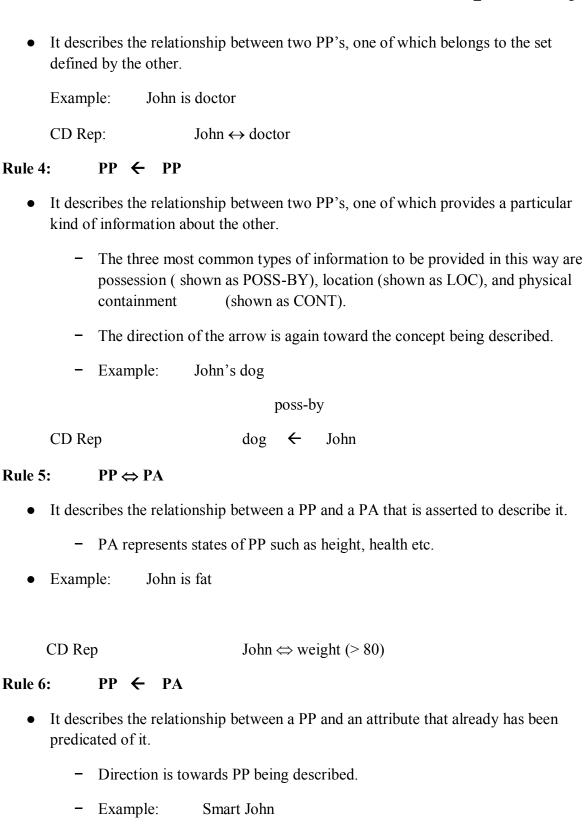
Rule 2: $ACT \leftarrow PP$

- It describes the relationship between a ACT and a PP (object) of ACT.
 - The direction of the arrow is toward the ACT since the context of the specific ACT determines the meaning of the object relation.
 - Example: John pushed the bike

O

CD Rep: John \Leftrightarrow PROPEL \leftarrow bike

Rule 3: $PP \leftrightarrow PP$



John ← smart

CD Rep

Rule 7: ACT
$$\leftarrow$$
 $\stackrel{R}{\leftarrow}$ PP (to) \leftarrow PP (from)

- It describes the relationship between an ACT and the source and the recipient of the ACT
 - Example: John took the book from Mary

CD Rep: John
$$\Leftrightarrow$$
 ATRANS \longleftarrow Mary Book

Rule 8:
$$PP \leftarrow PA$$

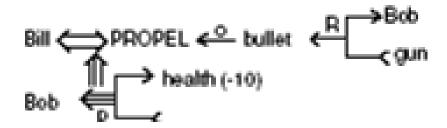
- It describes the relationship that describes the change in state.
 - Example: Tree grows

CD Rep: Tree
$$\rightarrow$$
 size $> C$
 \leftarrow size $= C$
 $\Leftrightarrow \{x\}$

- It describes the relationship between one conceptualization and another that causes it.
 - Here $\{x\}$ causes $\{y\}$ i.e., if x then y
 - Example: Bill shot Bob

{x} : Bill shot Bob

{y} : Bob's health is poor



- It describes the relationship between one conceptualization with another that is happening at the time of the first.
 - Here {y} is happening while {x} is in progress.
- Example: While going home I saw a snake
 I am going home

I saw a snake

Conceptual Dependency theory

Advantages

- Provides a formal theory of natural language semantics
- Reduces problems of ambiguity.

Prepared by, Dr.M.Rajeswari, Sahrdaya College of Engineering and Technology

- Representation directly captures much of the natural language semantics
- Sentences with similar meaning will have similar representations (canonical form).

Disadvantages:

- No program exists that can reliably reduce sentences to canonical form.
- Primitives not sufficient to represent more subtle concepts.

Scripts

- A script is a structured representation describing a stereotyped sequence of events in a particular context. (i.e. if the system isn't told some detail of what's going on, it assumes the "default" information is true).
- Scripts are used in natural language understanding systems to organize a knowledge base in terms of the situations that the system is to understand.

Why scripts?

- 1. Because real-world events do follow stereotyped patterns. Human beings use previous experiences to understand verbal accounts; computers can use scripts instead.
- 2. Because people, when relating events, do leave large amounts of assumed detail out of their accounts. People don't find it easy to converse with a system that can't fill in missing conversational detail.
- Scripts predict unobserved events.
- Scripts can build a coherent account from disjointed observations.

Applications

- This sort of knowledge representation has been used in intelligent front-ends, for systems whose users are not computer specialists.
- It has been employed in story-understanding and news-report-understanding systems.

Components of Scripts

- Script name (eg: restaurant)
 - Entry conditions: descriptors of the world that must be true for the script to be called.

Eg:- open restaurant, hungry customer

• Roles: actions that the individual participants perform.

Prepared by, Dr.M.Rajeswari, Sahrdaya College of Engineering and Technology

Eg:- waiter takes orders, customer orders, eats

• Props: the "things" that support the content of the script.

Eg:- tables, waiters

• Scenes: the script is broken into a sequence of scenes each of which presents a temporal aspect of the script.

Eg:- entering, ordering, eating, etc

• Results: facts that are true once the script has terminated.

Eg:- the customer is full and poorer

- The elements of the script are represented using conceptual dependency relationships.
- Placed together in a frame-like structure, they represent a sequence of meanings, or an event sequence.
- The program reads a small story about restaurants and parses it into an internal conceptual dependency representation.
- The program binds the people and things mentioned in the story to the roles and props mentioned in the script.
- The result is an expanded representation of the story contents, using the script to fill in any missing information and default assumptions.
- The program then answers questions about the story by referring to the script.
- Scripts

Example - Restaurant script.

Script: Restaurant Roles: S=Customer

<u>Track:</u> Coffee Shop W=Waiter

C=Cook M=Cashier

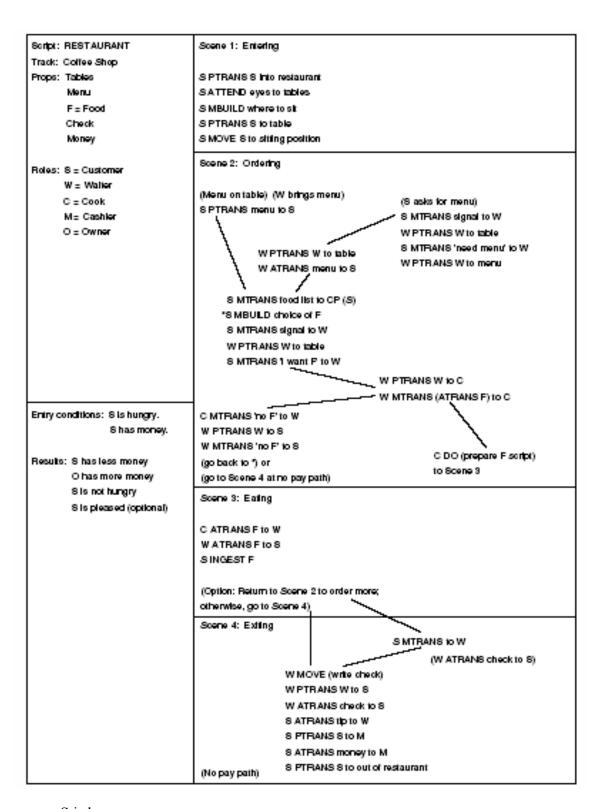
O=Owner

Props: Tables

F=Food

Check

Money & MENU



Entry conditions: S is hungry

S has money

Results: S has less money

O has more money

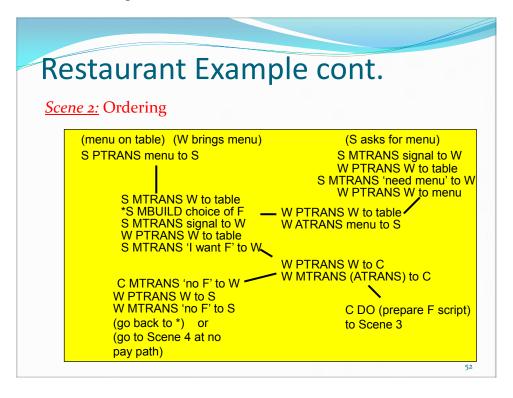
S is not hungry

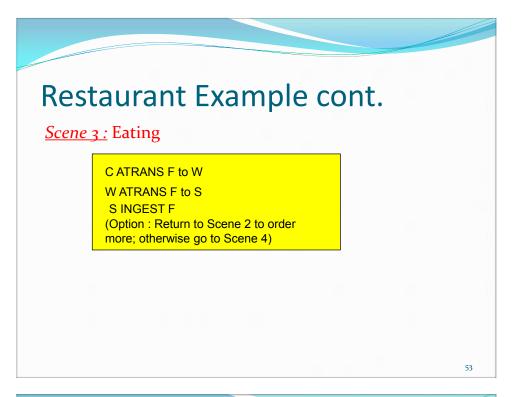
S is pleased (optional)

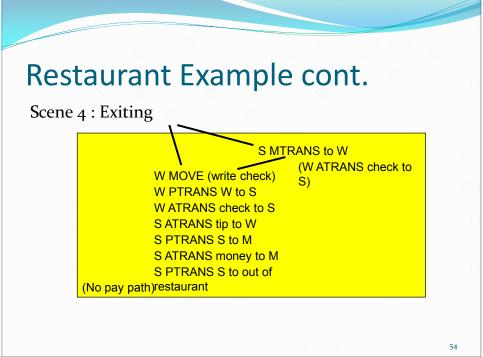
Scene 1: Entering

- S PTRANS S into restaurant
- S ATTEND eyes to tables
- S MBUILD where to sit
- S PTRANS S to table
- S MOVE S to sitting position

Scene 2: Ordering







Advantages / Disadvantages of Script

Advantages

- Capable of predicting implicit events
- Single coherent interpretation may be build up from a collection of observations.

Disadvantage

Prepared by, Dr.M.Rajeswari, Sahrdaya College of Engineering and Technology

- More specific (inflexible) and less general than frames.
- Not suitable to represent all kinds of knowledge.
- To deal with inflexibility, smaller modules called memory organization packets (MOP) can be used.
- MOPs represent knowledge as smaller components along with rules for dynamically combining them to form a schema that is appropriate to the current situation.

Frames

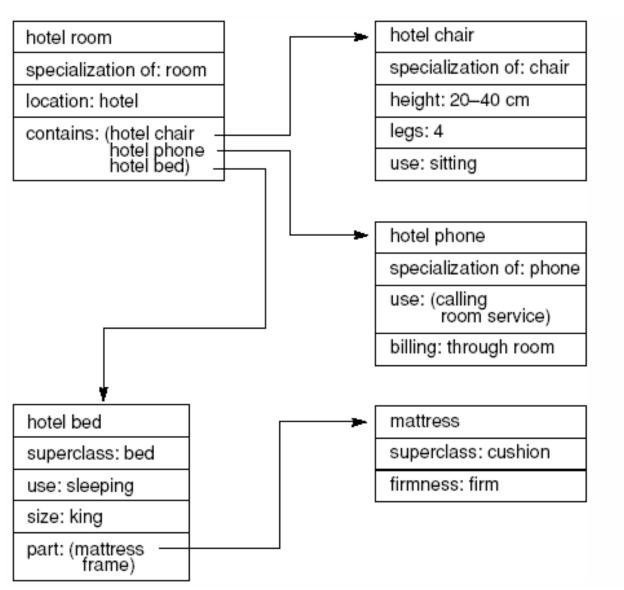
- Another representational scheme, in many ways similar to scripts, used to capture the implicit connections of information in a problem domain, was called frames.
- Frames support the organization of knowledge into more complex units reflecting the organization of objects in the domain.
- Can be viewed as a static data structure with values attached.
- Each individual frame may be seen as a data structure, similar to the traditional "record", that contains information relevant to stereotyped entities.
- The slots in the frame contain information such as:
 - Frame identification information.
 - Relationship of this frame to other frames.
 - Descriptors of requirements for a frame.
 - Procedural information on use of the structure described attaches procedural code to a slot
 - Frame default information slot values taken as true when no evidence is found. Eg:- chair has 4 legs
 - New instance information slots may be left unspecified until needed. Eg:-color of bedspread

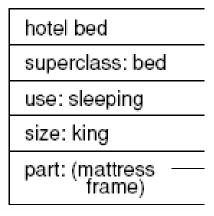
Advantages

- Frames add power and clarity to semantic nets by allowing complex objects to be represented as a single frame.
- Frames provide an easier framework to organize information hierarchically than semantic nets.
- Frames allow for procedural attachment which runs a *demon* (piece of code) as a result of another action in the KB (this has also been done to some semantic nets).

• Both frames and semantic nets support class inheritance.

Fig: Part of a frame description of a hotel room. "Specialization" indicates a pointer to a superclass.





- Frames provide an easier framework to organize information hierarchically than semantic nets.
- Frames allow for procedural attachment which runs a *demon* (piece of code) as a result of another action in the KB (this has also been done to some semantic nets).
- Both frames and semantic nets support class inheritance.

Agent-Oriented Problem Solving

An agent is a problem solver that is:

- Situated (interacts with its environment)
- Autonomous (makes its own decisions without external intervention)
- *Flexible* (responds to stimuli from the environment, and initiates actions based on situation).
- Social (can interact appropriately with other agents or with humans).

Multi-Agent Problem Solvers

- The term multi-agent system refers to all types of software systems composed of multiple semi-autonomous components.
- A particular problem can be solved by a number of modules (agents) which cooperate by dividing and sharing the knowledge about the problem and its evolving solution.
- Multi-agent systems are ideal for representing problems that include many problem-solving methods, multiple viewpoints, and multiple entities.
- Agents interact to
 - o cooperate towards achieving a common goal.
 - o coordinate in organizing the problem-solving activity.
 - o negotiate sub-problem constraints to improve performance.
- Multi-agent systems form a "loosely coupled network of agents that work together" to achieve solutions to problems beyond the capabilities of any individual agent.
- Application domains where agent-based problem solving is appropriate include:
 - 1. Manufacturing.
 - 2. Automated Control.
 - 3. Telecommunications.

- 4. Transportation Systems,
- 5. Information Management.
- 6. E-Commerce.
- 7. Interactive Games and Theater.

Agent-Oriented Problem Solving Example: ROBOCUP

RoboCup is an annual international robotics competition founded in 1997.

"An international research and education initiative."

Provides "a standard problem where wide range of technologies can be integrated and examined." (robocup.org)

Main domain: Soccer.

Format: Two teams of robots.

Robots compete in a soccer match on a standard platform.

Example: ROBOCUP

- Agents and objects (an instantiation of a class in OOP) share some similarities but are quite different.
- However, we can use objects to create agents.

Objects in OOP vs. Agents

• Similarities: Objects (like agents) have

- Systems with encapsulated states.
- Certain methods are associated with the object's state.
- Methods support interaction with the environment.
- Different objects communicate by message passing.

Differences:

- Objects do not usually control their own behaviour.
- Agents can initiate their own actions. Object generally do not.
- Objects do not have a *social behaviour*.
- Agents do not invoke methods in one another.
- Interacting agents usually have their own individual thread of control.
- Agents can use more than just simple messages to communicate.
- Objects are associated with their class. Agents can have multiple associations which may also change at any time.
- Emergence can occur from groups of agents but not from objects.

Machine Learning

- AI systems grow from a minimal amount of knowledge by learning
- Learning definition by Herbert Simon (1983):
 - Any change in a system that allows it to perform better the second time on repetition of the same task or on another task drawn from the same population
- Machine learning issues:
 - Generalization from experience
 - Induction For large domains, a learner usually examines only a fraction; from this limited experience, the learner generalizes to the unseen instances of the domain.
 - Inductive biases Learners generalize heuristically, that is, they select those aspects of their experience that are most likely to prove effective in the future.
 - Performance change: improve or degrade
- Machine Learning Categories

- 1. Symbol-based learning
 - Supervised learning
 - Inductive learning -- learning by examples
 - O Inductive Bias
 - Explanation-based learning
 - Unsupervised learning
 - O Clustering
 - Reinforcement learning: an agent is situated in an environment and receives feedback from that context
- 2. Neural/connectionist networks
- 3. Genetic/evolutionary learning

Machine learning: symbol-based

A framework for symbol-based learning

Factors for characterizing learning algorithms:

- 1. The data and goals of the learning task.
 - Describes the properties and quality of the training data.
 - The data may come from a teacher from the outside environment, or it may be generated by the program itself.
 - O Data may be reliable or may contain noise.
 - It can be presented in a well-structured fashion or consist of unorganized data.
 - It may include both positive and negative examples or only positive examples.
 - Data may be readily available, the program may have to construct experiments, or perform some other form of data acquisition.
- 2. The representation of learned knowledge.
 - Concepts can be represented as
 - O Logic expressions in predicate calculus
 - Structured representation such as frames or objects.

- O Decision trees
- O Rules

Eg: A simple formulation of the concept learning problem (Inferring the general definition of some concepts from specific positive and negative training examples) represents instances of a concept as conjunctive sentences containing variables.

```
Two instances of "ball".

size(obj1,small) \color(obj1,red) \shape(obj1,round)

size(obj2,large) \color(obj2,red) \shape(obj2,round)

A more general concept of "ball" is

size(X,Y) \color(X,Z) \shape(X, round)
```

- 3. A set of operations.
 - Given a set of training instances, the learner must construct a generalization, heuristic rule, or plan that satisfies its goals.
 - ie manipulate representations
 - Generalizing or specializing symbolic expressions
 - Adjusting the weights in a neural network
 - Modifying the program's representations.

Eg: Generalizing a definition by replacing constants with variables.

```
size(obj1,small)\color(obj1,red) \shape(obj1,round)
```

Replacing a single constant with a variable produces the generalizations:

```
size(obj1, X) \( \Lambda \) color(obj1, red) \( \Lambda \) shape(obj1, round)
```

size(obj1, small) \(\Lambda \) color(obj1, X) \(\Lambda \) shape(obj1, round)

size(obj1, small) \land color(obj1, red) \land shape(obj1, X)

 $size(X, small) \land color(X, red) \land shape(X, round)$

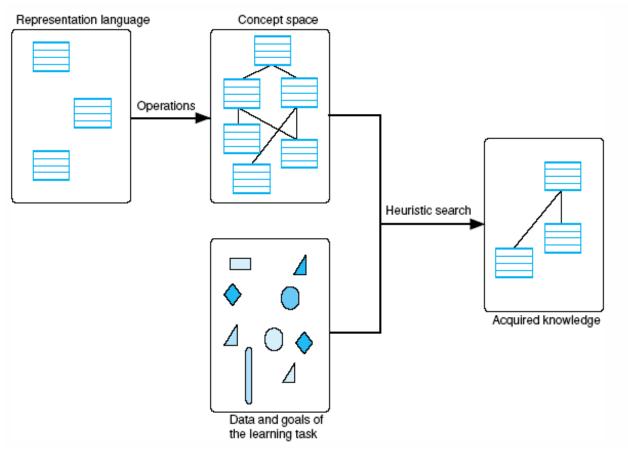
- 4. The concept space.
 - O Search space: its representation, format
 - The learner searches this space to find the desired concept.

• The complexity of this concept space is a primary measure of the difficulty of a learning problem.

5. Heuristic search.

• Learning programs must select a direction and order of search as well as the use of available training data and heuristics to search efficiently.

A general model of the learning process



Learning By Examples – Inductive Learning

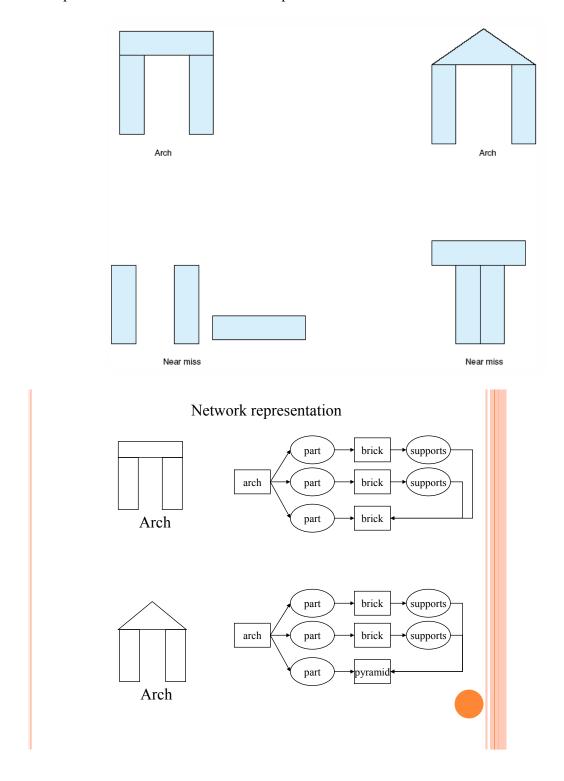
- O Patrick Winston (1975)
 - Given a set of positive and a set of negative examples
 - Find a concept representation
 - Semantic network representation

O Example

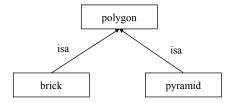
• Learn a general definition of structural concept, say "arch"

- Positive examples: examples of arch
 - What an arch looks like, to define the arch
- Negative examples: near misses
 - What an arch doesn't look like, to avoid the over-coverage of arch

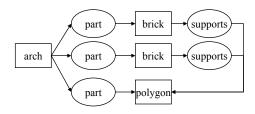
Examples and near misses for the concept "arch."



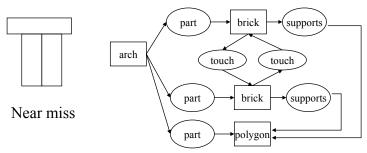
Background knowledge that bricks and pyramids are both types of polygons.



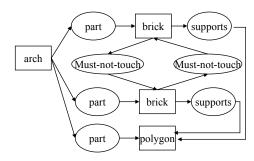
Arch description generalized to include both examples.



A near miss and its description

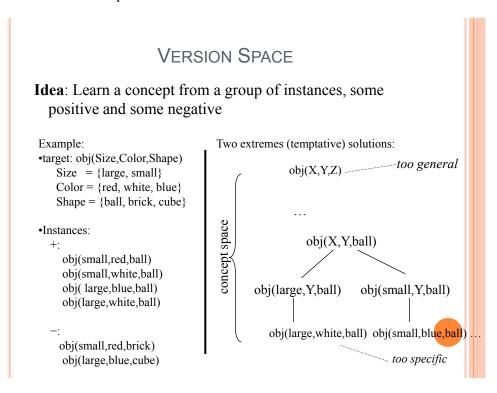


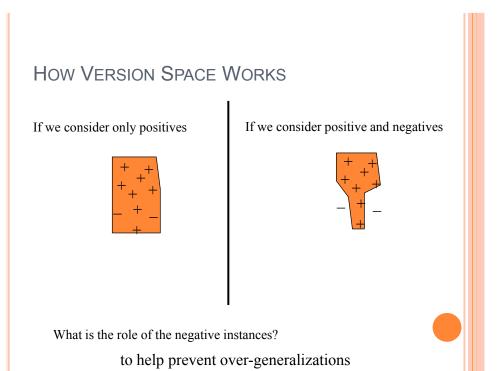
Arch description specialized to exclude the near miss



- O Version Space
- A version space is a hierarchical representation of knowledge that helps to keep track of all the useful information supplied by a sequence of learning examples without remembering any of the examples.
- The **version space method** is a concept learning process accomplished by managing multiple models within a version space.

- A version space description consists of two complementary trees:
 - One that contains nodes connected to overly general models, and
 - One that contains nodes connected to overly specific models.
 - Node values/attributes are **discrete**.
- Fundamental Assumptions:
 - The data is correct; there are no erroneous instances.
 - A correct description is a conjunction of some of the attributes with values.
- O Version Space





- O Version Space Search
- Implements inductive learning as search through a concept space.
- Generalization imposes an ordering on the concepts in the space and uses the ordering to guide the search.
- Generalization & specialization are the most common types of operations for defining a concept space.
 - Extend the coverage of instances
 - O Shorten/shrink the constrains
- Some generalization operators
- Replacing constants with variables
 - color(ball,red) *generalizes to* color(X,red)
 - Dropping conditions from a conjunctive expression
 - size(X,small) \(\color(X,red) \) \(\shape(X,round) \) generalizes to

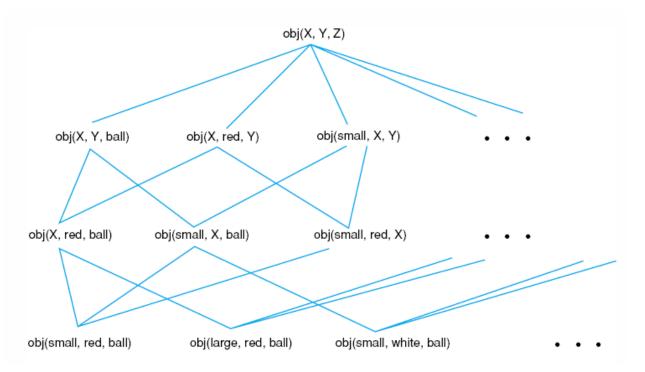
 $color(X,red) \land shape(X,round)$

- Adding a disjunct to an expression
- size(X,small) \land color(X,red) \land shape(X,round) *generalizes to* size(X,small) \land shape(X,round) \land (color(X,red) \lor color(X,blue))

- Replacing a property with its parent in a class hierarchy
- color(X,red) *generalizes to* color(X,primary_color) where primary_color is a superclass of red.

A concept space:

- Initial state obj(X, Y, Z) might cover all instances: too general
- As more instances are added, X, Y, Z will be constrained



- O Version space
- A version space is the set of all concept descriptions consistent with the training examples.
- O If concept p is more general than concept q, we say that p covers $q (p \ge q)$ ie $\forall x p(x) \rightarrow positive(x)$ & $\forall x q(x) \rightarrow positive(x)$
 - p covers q iff $q(x) \rightarrow positive(x)$ is a logical consequence of $p(x) \rightarrow positive(x)$.
- Version Space Search Algorithms
- Characteristics of these algorithms
 - Data-driven
 - O Positive examples to generalize the concept

- Negative examples to constrain the concept (avoid overgeneralization)
- Procedure:
 - Starting from whole space
 - Reducing the size of the space as more examples included
 - Finding regularities (rules) in the training data
- Generalization on these regularities (rules)
- **O** Three algorithms
 - Reducing the size of the version space in a specific to general direction
 - Reducing the size of the version space in a general to specific direction
 - Combination of above: candidate elimination algorithm
- O Specific to General Search
- → Maintains a set S of candidate concepts, the maximally specific generalizations from the training instances
- → A concept c is maximally specific if it
 - covers all positive examples, none of the negative examples, and
 - for any other concept c' that covers the positive examples, $c \le c'$
 - The algorithm uses
 - Positive examples to generalize the candidate concepts
 - Negative example to avoid over generalization

Begin

Initialize S to the first positive training instance; N is the set of all negative instances seen so far;

For each positive instance p

Begin

For every $s \in S$, if s does not match p, replace s with its most specific generalization that matchs p;

Delete from S all hypotheses more general than some other hypothesis in S; Delete from S all hypotheses that match a previously observed negative instance in N;

End;

For every negative instance n

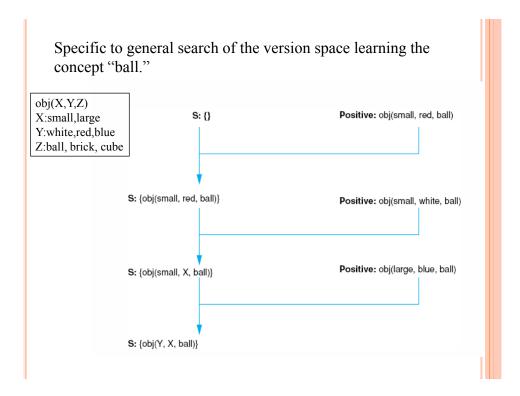
Begin

Delete all members of S that match n;

Add n to N to check future hypotheses for overgeneralization;

End;

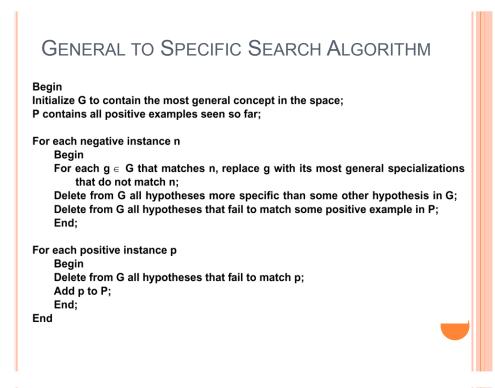
End

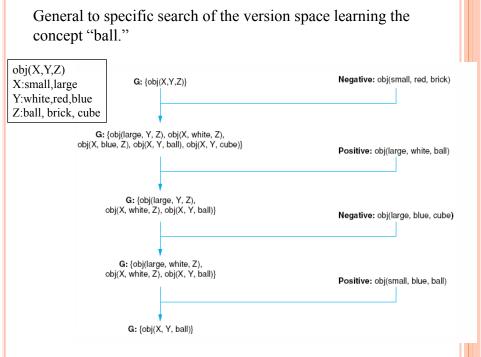


General to Specific Search

- → Maintains a set G of maximally general concepts
- → A concept c is maximally general if it
 - covers none of the negative training examples, and
 - for any other concept c' that covers no negative training examples, c≥c'

- The algorithm uses
- negative examples to specialize the candidate concepts
- Positive examples to eliminate overspecialization





Candidate Elimination Algorithm

→ Combination of above two algorithms into a bi-direction search

- → Maintains two sets of candidate concepts
 - G, the set of maximally general candidates
 - S, the set of maximally specific candidates
 - The algorithm specializes G and generalizes S until they converge on the target concept.

CANDIDATE ELIMINATION ALGORITHM

Beain

Initialize G to be the most general concept in the space; Initialize S to the first positive training instance;

For each new positive instance p

Begin

Delete all members of G that fail to match p;

For every $s \in S$, if s does not match p, replace s with its most specific generalizations that match p;

Delete from S any hypothesis more general than some other hypothesis in S; Delete from S any hypothesis more general than some hypothesis in G; End;

For each new negative instance n

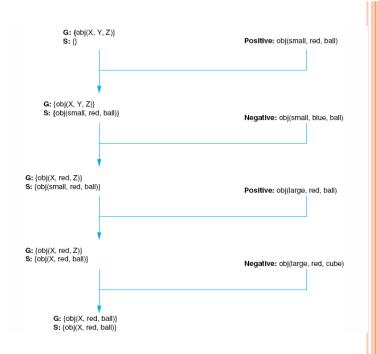
Begin

Delete all members of S that match n;

For each $g \in G$ that matches n, replace g with its most general specializations that do not match n:

Delete from G any hypothesis more specific than some other hypothesis in G; Delete from G any hypothesis more specific than some hypothesis in S; End;

The candidate elimination algorithm learning the concept "red ball."



- The candidate elimination algorithm combines the specific-to-general search and the general-to-specific search into a bi-directional search.
- The candidate elimination algorithm is not noise resistant.
- The candidate elimination algorithm will converge toward the target concept if
 - There are no errors in the training samples and
 - There is some concept description in the concept space that correctly describes the target concept.
- The innermost circle encloses the set of known positive instances covered by the concepts in S
- The outermost circle encloses the instances covered by G; any instance outside this circle is negative.
- The shaded portion of the graphic contains the target concept, along with concepts that may be overly general or specific (the ?s).
- The search "shrinks" the outermost concept as necessary to exclude negative instances; it "expands" the innermost concept to include new positive instances.
- Eventually, the two sets converge on the target concept.
- In this fashion, candidate elimination can detect when it has found a single, consistent target concept.
- When both G and S converge to the same concept the algorithm may halt.
- If G and S become empty, then there is no concept that will cover all positive instances and none of the negative instances.

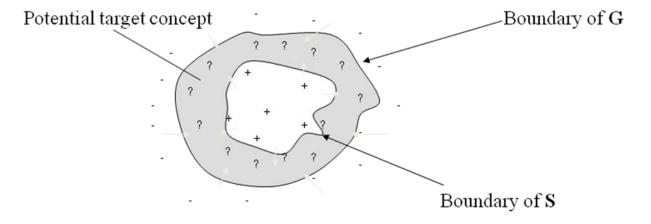


Fig: Converging boundaries of the G and S sets in the candidate elimination algorithm

O Decision Trees

- Learning algorithms of inducing concepts from examples
- Characteristics
 - A tree structure to represent the concept, equivalent to a set of rules
 - Entropy and information gain as heuristics for selecting candidate concepts
 - Handling noisy data
 - Classification supervised learning
 - Typical systems: ID3, C4.5, C5.0

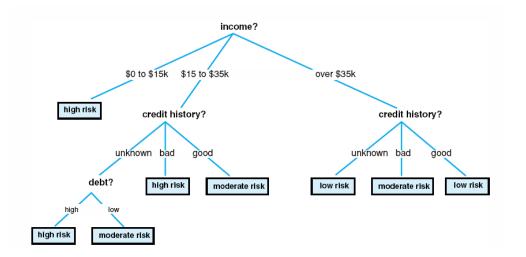
The ID3 decision tree induction algorithm

- O ID3 induces concepts from examples.
- O ID3 represents concepts as decision trees.
- For example, consider the problem of estimating an individual's credit risk on the basis of such properties as credit history, current debt, collateral, and income.
- Table below lists a sample of individuals with known credit risks.

Data from credit history of loan applications

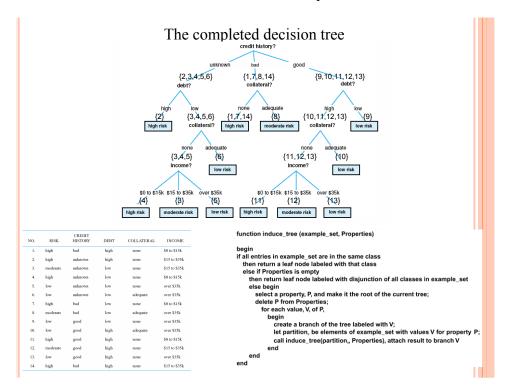
NO.	RISK	CREDIT HISTORY	DEBT	COLLATERAL	INCOME
1.	high	bad	high	none	\$0 to \$15k
2.	high	unknown	high	none	\$15 to \$35k
3.	moderate	unknown	low	none	\$15 to \$35k
4.	high	unknown	low	none	\$0 to \$15k
5.	low	unknown	low	none	over \$35k
6.	low	unknown	low	adequate	over \$35k
7.	high	bad	low	none	\$0 to \$15k
8.	moderate	bad	low	adequate	over \$35k
9.	low	good	low	none	over \$35k
10.	low	good	high	adequate	over \$35k
11.	high	good	high	none	\$0 to \$15k
12.	moderate	good	high	none	\$15 to \$35k
13.	low	good	high	none	over \$35k
14.	high	bad	high	none	\$15 to \$35k

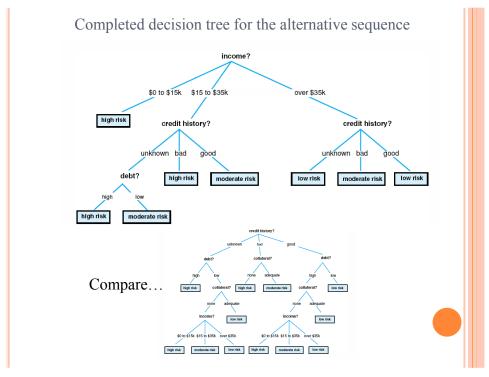
- In a decision tree, each internal node represents a test on some property
- Each possible value of that property corresponds to a branch of the tree
- Leaf nodes represents classification, such as low or moderate risk



ID3 Decision Tree

- O ID3 constructs decision trees in a top-down fashion.
- ID3 selects a property to test at the current node of the tree and uses this test to partition the set of examples
- The algorithm recursively constructs a sub-tree for each partition
- This continues until all members of the partition are in the same class





Prepared by, Dr.M.Rajeswari, Sahrdaya College of Engineering and Technology

Explanation-Based Learning

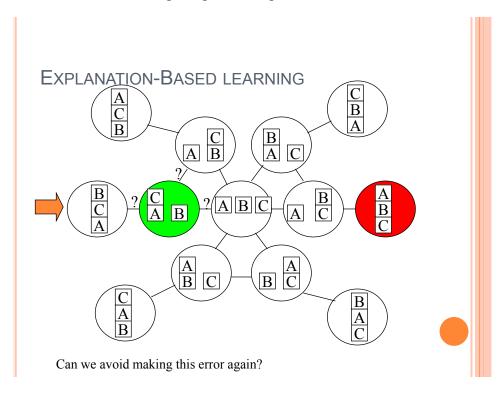
• Learner is to determine an effective definition for a *target concept* (e.g., a classification, theorem to be proved, plan for achieving a goal, heuristic of a problem solver).

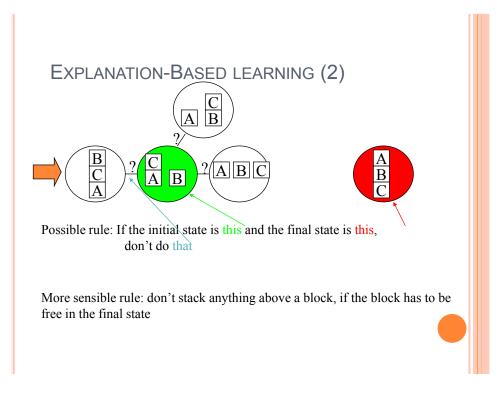
• The learner is given:

- A target concept
- A training example.
- A *domain theory* (i.e., a set of facts and rules used to explain how the training example is an instance of the goal concept).
- Some *operationality criteria* (i.e., a means of describing the form that concept definitions may take.)
- From this EBL computes a generalisation of the training example that is sufficient not only to describe the goal concept but also satisfies the operational criterion.

O This has two steps:

- **Explanation** -- the domain theory is used to prune away all unimportant aspects of the training example with respect to the goal concept.
- **Generalisation** -- the explanation is generalised as far possible while still describing the goal concept.





Unsupervised learning

- **O** Unsupervised Learning eliminates the teacher and requires that the learners form and evaluate concepts their own.
- Science is perhaps the best example of unsupervised learning in humans.
- O Scientists do not have the benefit of a teacher.
- Instead, they propose hypotheses to explain observations
- The clustering problem starts with (1) a collection of unclassified objects and (2) a means for measuring the similarity of objects.
- The goal is to organize the objects into classes that meet some standard of quality, such as maximizing the similarity of objects in the same class.

Unsupervised Learning: Clustering

- Numeric taxonomy
 - Objects represented as collection of numeric features (feature vector; a point in an multi-dimensional space)
 - A similarity function is defined for two objects according to Euclidean distance
 - e.g., agglomerative clustering; k-means
- Symbolic taxonomy

- Objects represented as collection of symbolic features
- Similarity could be proportion of features in common
- Conceptual clustering
- O Produces general concept definitions
- Applies background knowledge to formation of categories

Reinforcement Learning

- In reinforcement learning, we design computational algorithms for transforming world situations into actions in a manner that maximizes a reward measure.
- Our agent is not told directly what to do or which action to take; rather, the agent discovers through exploration which actions offer the most reward.
- The agent acts on its environment, it receives some evaluation of its action (reinforcement), but is not told of which action is the correct one to achieve its goal.

Examples

O Game playing:

Player knows whether it win or lose, but not know how to move at each step.

O Control:

A traffic system can measure the delay of cars, but not know how to decrease it.

O Playing chess:

Reward comes at end of game

O Animals:

Hunger and pain - negative reward

food intake – positive reward

RL is learning from interaction

