

Course code	Course Name	L-T-P -Credits	Year of Introduction
CS405	COMPUTER SYSTEM ARCHITECTURE	3-0-0-3	2016

Course Objectives:

- To impart a basic understanding of the parallel architecture and its operations
- To introduce the key features of high performance computers

Syllabus:

Basic concepts of parallel computer models, SIMD computers, Multiprocessors and multi-computers, Cache Coherence Protocols, Multicomputers, Pipelining computers and Multithreading.

Expected outcome:

The Students will be able to:

- i. summarize different parallel computer models
- ii. analyze the advanced processor technologies
- iii. interpret memory hierarchy
- iv. compare different multiprocessor system interconnecting mechanisms
- v. interpret the mechanisms for enforcing cache coherence
- vi. analyze different message passing mechanisms
- vii. analyze different pipe lining techniques
- viii. appraise concepts of multithreaded and data flow architectures

Text Book:

• K. Hwang and Naresh Jotwani, Advanced Computer Architecture, Parallelism, Scalability, Programmability, TMH, 2010.

References:

- 1. H P Hayes, Computer Architecture and Organization, McGraw Hill, 1978.
- 2. K. Hwang & Briggs, Computer Architecture and Parallel Processing, McGraw Hill International, 1986
- 3. M J Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Narosa Publishing House, 2012.
- 4. M Sasikumar, D Shikkare and P Raviprakash, Introduction to Parallel Processing, PHI, 2014.
- 5. P M Kogge, The Architecture of Pipelined Computer, McGraw Hill, 1981.
- 6. PVS Rao, Computer System Architecture, PHI, 2009.
- 7. Patterson D. A. and Hennessy J. L., Morgan Kaufmann, Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufmann Pub, 4/e, 2010.

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	Parallel computer models – Evolution of Computer Architecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.	6	15%
II	Processors and memory hierarchy - Advanced processor technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.	8	15%
	FIRST INTERNAL EXAM		
Ш	Multiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem	7	15%
IV	Message Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques – Linear Pipeline processors and Nonlinear pipeline processors	8	15%
	SECOND INTERNAL EXAM	Γ	
V	Instruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design	8	20%
VI	Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Finegrain Multicomputer- Fine-grain Parallelism. Dataflow and hybrid architecture	8	20%
	END SEMESTER EXAM		

Question Paper Pattern (End semester exam)

1. There will be *FOUR* parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- b. *TEN* questions, each have **4 marks**, covering **all the SIX modules** (*THREE* questions from **modules I & II**; *THREE* questions from **modules III & IV**; *FOUR* questions from **modules V & VI**).

All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks: 18
- b. THREE questions, each having 9 marks. One question is from module III; one question is from module IV; one question uniformly covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.

5. Part D

- a. Total marks: 24
- b. THREE questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.