
CST281

Object Oriented Programming

MODULE 4

Advanced features of Java

Prepared by Sharika T R, SNGCE

2

Syllabus

•Input/Output –

•I/O Basics, Reading Console Input, Writing Console Output,

PrintWriter Class, Object Streams and Serialization, Reading and

Writing Files.

•Java Library

•String Handling – String Constructors, String Length, Special

String Operations Character Extraction, String Comparison,

Searching Strings, Modifying Strings, Using valueOf(),

Comparison of StringBuffer and String.

•Collections framework

•Collections overview, Collections Class – ArrayList. Accessing

Collections via an Iterator.

I/O Basics

• Only print() and println() are used frequently. All

other I/O methods are not used significantly.

– Because most real applications of Java are not text-based,

console programs.

• Java’s support for console I/O is limited

3

Prepared by Sharika T R, SNGCE

Streams

• Java programs perform I/O through streams.

• A stream is an abstraction that either produces or

consumes information.

• A stream is a sequence of objects that supports various

methods.

• A stream is linked to a physical device by the Java I/O

system.

– Input stream may refer to different kinds of input: from a disk

file, a keyboard, or a network socket

– Output stream may refer to the console, a disk file, or a network

connection.
4

Working of Java I/O stream

• Stream is like a flow of data.

5

Prepared by Sharika T R, SNGCE

Streams

• The java.io package contains all the classes required for

input and output operations.

• Java defines two types of streams: byte and character.

• Byte streams provides a means for handling input and

output of bytes.

– Byte streams are used when reading or writing binary data.

• Character streams provide a means for handling input

and output of characters.

– they use Unicode.

– in some cases, character streams are more efficient than byte

streams.
6

ByteStream classes

• Byte streams are defined by using two class hierarchies.

• At the top are two abstract classes:

– InputStream and OutputStream.

• Each of these abstract classes has several concrete

subclasses

– that handle the differences between various devices, such as

disk files, network connections, and even memory buffers.

• Two of the most important are read() and write(),

– These methods are overridden by derived stream classes.

7

Prepared by Sharika T R, SNGCE

ByteStream classes

8

9

Prepared by Sharika T R, SNGCE

Character streams

• Character streams are defined by using two class

hierarchies.

• At the top are two abstract classes,

– Reader and Writer.

• Java has several concrete subclasses of each of these.

• Two of the most important methods are read() and write().

– These methods are overridden by derived stream classes.

10

11

Prepared by Sharika T R, SNGCE

12

13

Prepared by Sharika T R, SNGCE

The Predefined Streams

• All Java programs automatically import the java.lang package.

This package defines a class called System.

• System contains three predefined stream variables:

– in, out, and err.

– These fields are declared as public, static, and final within System.

• System.out refers to the standard output stream.

• System.in refers to standard input, which is the keyboard by

default.

• System.err refers to the standard error stream, which is the

console by default.

• System.in is an object of type InputStream; System.out and

System.err are objects of type PrintStream.
14

Reading Console Input

• The preferred method of reading console input is to use a

character-oriented stream.

• In Java, console input is accomplished by reading from

System.in.

– To obtain a character based stream that is attached to the

console, wrap System.in in a BufferedReader object.

15

Prepared by Sharika T R, SNGCE

• BufferedReader supports a buffered input stream.

– Its most commonly used constructor is:

BufferedReader(Reader inputReader)

• Here, inputReader is the stream that is linked to the

instance of BufferedReader that is being created.

• Reader is an abstract class.

16

• One of the concrete subclasses of Reader is

InputStreamReader.

• InputStreamReader converts bytes to characters.

– It reads bytes and decodes them into characters using a

specified charset.

• To obtain an InputStreamReader object that is linked to

System.in, the constructor that can be used is :

InputStreamReader(InputStream inputStream)

17

Prepared by Sharika T R, SNGCE

• Following line of code creates a BufferedReader that is

connected to the keyboard:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

• By wrapping the System.in (standard input stream) in an

InputStreamReader which is wrapped in a BufferedReader,

we can read input from the user in the command line.

• After this statement executes, br is a character-based stream

that is linked to the console through System.in

18

Reading console-summary

• To accept data from keyboard, we use System.in.

(bytestream)

• We need to connect keyboard to an input stream object.

• Here we can use InputStreamReader that can read data

from the keyboard

– convert byte stream to character stream

• Now our data reaches InputSreamReader

• BufferedReader class is used to read the text from a

character-based input stream.

19

Prepared by Sharika T R, SNGCE

• To make program run fast and to make reading efficient ,

buffering can be done using BufferedReader class. It can

read data from stream.

• Create BufferedReader object and connect

InputStreamReader object to it

20

21

Prepared by Sharika T R, SNGCE

Reading Characters

• To read a character from a BufferedReader, use read().

• The version of read() is

int read() throws IOException

• Each time that read() is called, it reads a character from

the input stream and returns it as an integer value.

• It returns –1 when the end of the stream is encountered

22

23

Prepared by Sharika T R, SNGCE

24

Reading Strings

• To read a string from the keyboard, use the version of

readLine() that is a member of the BufferedReader

class.

• Its general form is

– String readLine() throws IOException

• This returns a String object.

25

Prepared by Sharika T R, SNGCE

26

27

Prepared by Sharika T R, SNGCE

Read console inputs

28

Writing Console Output

• Console output is usually done through print() and

println().

• These methods are defined by the class PrintStream.

– It is the type of object referenced by System.out.

– System.out is a byte stream,

• PrintStream is an output stream derived from

OutputStream,

– PrintStream also implements the low-level method write().

– write() can be used to write to the console.

29

Prepared by Sharika T R, SNGCE

• The simplest form of write() defined by PrintStream is

• void write(int byteval)

– This method writes the byte specified by byteval to the stream

– byteval is declared as an integer, only the low-order eight bits

are written.

30

31

Prepared by Sharika T R, SNGCE

PrintWriter class

• For real-world programs, the recommended method of writing to

the console using Java is through a PrintWriter stream.

• PrintWriter is one of the character-based classes.

• PrintWriter defines several constructors.

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

• Here, outputStream is an object of type OutputStream, and

flushOnNewline controls whether Java flushes the output stream

every time a println() method is called.

– If flushOnNewline is true, flushing automatically takes place.

– If false, flushing is not automatic.

32

• PrintWriter supports the print and println() methods

• If an argument is not a simple type, the PrintWriter

methods call the object’s toString() method and then print
the result.

• To write to the console by using a PrintWriter, specify

• System.out for the output stream and flush the stream

after each new line.

PrintWriter pw = new PrintWriter(System.out, true);

33

Prepared by Sharika T R, SNGCE

34

35

Prepared by Sharika T R, SNGCE

Object Streams and Serialization

• Object streams support I/O(input-output) of objects

• The object stream classes are

– ObjectInputStream

– ObjectOutputStream

36

Serialization

• Serialization is the process of writing(converting) the state

of an object to a byte stream.

– This is useful when we want to save(store) the state of the

program to a persistent(permanent) storage area,

– such as a file or when we want to send it over network.

• Later we can restore these objects by using the process

of deserialization.

– Deserialization converts byte streams into object.

37

Prepared by Sharika T R, SNGCE

38

• Serialization is also needed to implement Remote Method

Invocation (RMI).

– RMI allows a Java object on one machine to invoke a method

of a Java object on a different machine.

– The sending machine serializes the object and transmits it.

– The receiving machine deserializes it.

39

Prepared by Sharika T R, SNGCE

• If we attempt to serialize an object at the top of an object

graph,

– all of the other referenced objects are recursively located and

serialized.

• Similarly, during the process of deserialization, all of these

objects and their references are correctly restored when

deserialization is done at the top.

40

• Interfaces and classes that support serialization are:

– Serializable

– Externalizable

41

Prepared by Sharika T R, SNGCE

Serializable

• Only an object that implements the Serializable interface

can be saved and restored by the serialization facilities.

• The Serializable interface defines no members.

• It is simply used to indicate that a class may be serialized.

• If a class is serializable, all of its subclasses are also

serializable.

• Variables that are declared as transient and static

variables are not saved by the serialization facilities.

42

Externalizable

• Much of the work to save and restore the state of an object occurs

automatically.

– The programmer may need to have control over these processes.

– it may be desirable to use compression or encryption techniques.

• The Externalizable interface is designed for these situations.

• The Externalizable interface defines two methods:

43

Prepared by Sharika T R, SNGCE

ObjectOutput

• The ObjectOutput interface extends the DataOutput

interface and supports object serialization.

• It defines the methods such as writeObject()

• writeObject() method is called to serialize an object.

• All of these methods will throw an IOException on error

conditions

44

45

Prepared by Sharika T R, SNGCE

ObjectOutputStream

• The ObjectOutputStream class extends the OutputStream class

and implements the ObjectOutput interface.

• It is responsible for writing objects to a stream.

• A constructor of this class is

ObjectOutputStream(OutputStream outStream) throws IOException

– The argument outStream is the output stream to which serialized objects

will be written.

• Methods in this class will throw an IOException on error

conditions.

• There is also an inner class to ObjectOuputStream called

PutField.

– It facilitates the writing of persistent fields.
46

ObjectOutputStream-methods

47

Prepared by Sharika T R, SNGCE

ObjectInput

• The ObjectInput interface extends the DataInput

interface and defines the method such as readObject()

method.

• This is called to deserialize an object.

• All of these methods will throw an IOException on error

conditions.

• The readObject() method can also throw

ClassNotFoundException

48

ObjectInput-methods

49

Prepared by Sharika T R, SNGCE

ObjectInputStream

• The ObjectInputStream class extends the InputStream class and

implements the ObjectInput interface.

• ObjectInputStream is responsible for reading objects from a

stream.

• A constructor of this class is

ObjectInputStream(InputStream inStream) throws IOException

– The argument inStream is the input stream from which serialized objects

should be read.

• The methods will throw an IOException on error conditions.

• The readObject() method can also throw

ClassNotFoundException.

• There is also an inner class to ObjectInputStream called GetField.

It facilitates the reading of persistent fields
50

Working with Files

• In Java, all files are byte-oriented.

• Java provides methods to

– read bytes from a file and

– write bytes to a file.

51

Prepared by Sharika T R, SNGCE

• Two of the most often-used file stream classes are

• FileInputStream

– FileInputStream is an input stream to read data

– from a file in the form of sequence of bytes

• FileOutputStream

– FileOutputStream class is an output stream for

– writing data to a file

52

OPEN a file

• To open a file,

– create an object of one of these classes

– specify the name of the file as an argument to the constructor.

• If we want to open a file for reading

– Create object of FileInputStream class

• If we want to open a file for writing

– Create object of FileOutputStream class

53

Prepared by Sharika T R, SNGCE

• Main constructors are

• Here, fileName specifies the name of the file (as String

i.e. enclose in double quotes) that we want to open.

– When we create an input stream, if the file does not exist, then

FileNotFoundException is thrown.

– For output streams, if the file cannot be created, then

FileNotFoundException is thrown.

• When an output file is opened, any file that is already existing with the

same name as output file is destroyed

54

To open a file for reading

• We have to create FileInputStream class object and pass

filename as the parameter to the constructor.

• E.g. to open the file Sample.txt for reading

FileInputStream fileobject;

fileobject = new FileInputStream(“Sample.txt");

55

Prepared by Sharika T R, SNGCE

To open a file for writing

• We have to create FileOutputStream class object and

pass filename as the parameter to the constructor.

• E.g. to open the file Sample.txt for writing

FileOutputStream fileobject;

fileobject = new FileOutputStream(“Sample.txt");

56

Closing a file

• After completing file read or write operations, we should

close the file by calling close().

• It is defined by both FileInputStream and

FileOutputStream :

57

Prepared by Sharika T R, SNGCE

58

read a file

• To read data from a file,

– First, we have to create FileInputStream class object and pass

filename as the parameter to the constructor.

E.g. FileInputStream fileobject;

 fileobject = new FileInputStream(“Sample.txt");
– Next,we can use a version of read() that is defined within

FileInputStream. int read() throws IOException

E.g. int c=fileobj.read();

• Each time read() called, it reads a single byte from the file

and returns the byte as an integer value.

– read() returns –1 when the end of the file is encountered.

– read() can throw an IOException.
59

Prepared by Sharika T R, SNGCE

60

• In this program, to read the file, an object of

FileInputStream class is created.

FileInputStream f;

f= new FileInputStream(“Sample.txt");

• Here the argument of the constructor in FileInputStream is

the name of the file to be read. Here “Sample.txt”
• The following statement read one byte from the file and

store in integer variable c

c=f.read();

61

Prepared by Sharika T R, SNGCE

• The following statement converts the integer variable c

into character using char(c) and print that character on the

output screen (console)

System.out.print((char)c);

• This continues until c is equal to -1(end of file)

62

• Exceptions(run time error) lik FileNtotFoundException (if the given

filename is not in the system path) may occur during file

operations.

• So it is better to enclose file operation statements within try block

for handling exceptions.

• If the file we try to read a file that does not exist, then that

exception is caught by the following catch block and the

corresponding action in it is done.

63

Prepared by Sharika T R, SNGCE

• To write to a file, we can use the write() method defined

by FileOutputStream.

void write(int byteval) throws IOException

– This method writes the byte specified by byteval to the file.

– Although byteval is declared as an integer, only the loworder

eight bits are written to the file.

– If an error occurs during writing, an IOException is thrown

64

Steps to write data to a file

• To write data from a file,

– First, we have to create FileOutputStream class object and

pass filename as the parameter to the constructor.

– Using write function store the byte value in file.eg:

 int c=65;

 FileOutputStream fileobject;

 fileobject = new FileOutputStream(“Sample.txt");
 fileobject.write(c);

• Here lower order will be stored. So this will store ASCII

value of 65 that is letter A in file Sample.txt 65

Prepared by Sharika T R, SNGCE

FILE COPY –copy contents from test.txt to cp.txt

66

Working of file copy program

• For reading a file, FileInputStream object need to created.

– Here f1

 FileInputStream f1=null;

 f1= new FileInputStream("test.txt");

• For writing to a file, FileOutputStream object need to

created

– Here f2

 FileOutputStream f2=null;

 f2= new FileOutputStream("cp.txt");
67

Prepared by Sharika T R, SNGCE

• This means that integer f1.read() reads a

single byte from file pointed by

f1(test.txt) and store in integer variable c.

• If c is not -1 (end-of-file) then c is

converted int character using(char)

casting.

f2.write((char)c);

• This statement writes the character

equivalent of c into file pointed by f2(cp.txt)

• This continues until c==-1 68

69

Prepared by Sharika T R, SNGCE

70

FileReader

• The FileReader class creates a Reader that we can use

to read the contents of a file.

• Its two most commonly used constructors are shown

here:

FileReader(String filePath)

FileReader(File fileObj)

– They can throw a FileNotFoundException. Here, filePath is the

full path name of a file, and fileObj is a File object that

describes the file.

• The following example shows how to. It reads its own

source file, which must be in the current directory.
71

Prepared by Sharika T R, SNGCE

72

FileWriter

• FileWriter creates a Writer that you can use to write to a

file.

• Its most commonly used constructors are:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)

FileWriter(File fileObj, boolean append)

– They can throw an IOException. Here, filePath is the full path

name of a file, and fileObj is a File object that describes the file.

– If append is true, then output is appended to the end of the file.
73

Prepared by Sharika T R, SNGCE

• FileWriter will create the file before opening it for output

when you create the object.

– In the case where we attempt to open a read-only file, an

IOException will be thrown.

• getChars() method is used to extract the character array

equivalent.

74

75

Prepared by Sharika T R, SNGCE

76

77

Syllabus

•Input/Output –

•I/O Basics, Reading Console Input, Writing Console Output,

PrintWriter Class, Object Streams and Serialization, Reading and

Writing Files.

•Java Library

•String Handling – String Constructors, String Length, Special

String Operations Character Extraction, String Comparison,

Searching Strings, Modifying Strings, Using valueOf(),

Comparison of StringBuffer and String.

•Collections framework

•Collections overview, Collections Class – ArrayList. Accessing

Collections via an Iterator.

Prepared by Sharika T R, SNGCE

String Handling

• String is a class in Java.

• Java implements strings as objects of type String.

– The String type is used to declare string variables

• Java has methods to compare two strings, search for a

substring, concatenate two strings, and change the case

of letters within a string.

• A quoted string constant(E.g. “hello”) can be assigned to
a String variable.

• A variable of type String can be assigned to another

variable of type String. 78

String Constructors

• The String class supports several constructors.

• To create an empty String, call the default constructor.

String()

– For example,

String s = new String();

– This will create an instance of String with no characters in it.

79

Prepared by Sharika T R, SNGCE

• To create a String initialized by an array of characters,

use the constructor

String(char chars[])

• Example:

char letters[] = { 'a', 'b', 'c' };

String s = new String(letters);

• This constructor initializes s with the string “abc”.

80

• To initialize a string with a subrange of a character

array(substring) the following constructor is used:

String(char chars[], int startIndex, int numChars)

– Here, startIndex specifies the startindex at which the subrange begins,

and

– numChars specifies the number of characters to use.

• E.g.

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };

 0 1 2 3 4 5

String s = new String(chars, 2, 3);

• This initializes s with the characters starting from index 2 and

number of letters =3. i.e. s will contain cde.
81

Prepared by Sharika T R, SNGCE

• We can construct a String object that contains the same character

sequence as another String object using this constructor:

String(String strObj)

82

• String class provides constructors that initialize a string

when given a byte array. Their forms are shown here:

• Here asciiChars specifies the array of bytes.

– In each of these constructors, the byte-to-character conversion

is done by using the default character encoding of the platform.

83

Prepared by Sharika T R, SNGCE

84

85

Prepared by Sharika T R, SNGCE

String Length

• The length of a string is the number of characters in the

string

• E.g. length of the string “hello” is 5

• The method length() is used to find the length of the

string.

int length()

86

Special String Operations

• These operations include

– the automatic creation of new String instances(object) from

string literals

– concatenation of multiple String objects by use of the +

operator, and

– the conversion of other data types to a string representation.

87

Prepared by Sharika T R, SNGCE

String Literals

• Java automatically constructs a String object for each string literal

in our program,.

– So we can use a string literal to initialize a String object

• We can use a string literal at any place where we use a String

object.

• String literals can call the length() method on the string

E.g.

System.out.println("abc".length());
88

String Concatenation

• String concatenation is used to join two strings

• Method 1:The + operator can be used between strings to combine

them. This is called concatenation.

• Operator + can be chained to concatenate many strings

String age = "9";

String s = "He is " + age + " years old.";

System.out.println(s);

• This fragment displays the string He is 9 years old.

• Instead of letting long strings wrap around within our source code,

we can break them into smaller pieces, using the + to concatenate

them 89

Prepared by Sharika T R, SNGCE

String Concatenation with Other Data Types

• We can concatenate strings with other types of data.

• If one of the operand of the + is an instance of String then

compiler will convert other operand to its string equivalent.

• Parentheses can be used for grouping integers and + to perform

addition.

90

String Conversion and toString()

• When Java converts data into its string representation

during concatenation, it calls one of the overloaded

versions of the string conversion method valueOf() by

class String.

• valueOf() is overloaded for all the simple types and for

type Object

– For the simple types, valueOf() returns a string that contains

the human-readable equivalent of the value with which it is

called.

– For objects, valueOf() calls the toString() method on the

Object. 91

Prepared by Sharika T R, SNGCE

String Conversion and toString()

92

93

Prepared by Sharika T R, SNGCE

Without using toString()

94

95

Prepared by Sharika T R, SNGCE

Character Extraction

• The String class provides the following methods through

which characters can be extracted from a String object.

• charAt()

• getChars()

• getBytes()

• toCharArray()

96

charAt()

• Used to extract a single character from a String

• we can refer directly to an individual character via the

charAt() method.

• General form:

char charAt(int where)

• Here where is the index of the character that you want to

obtain. e.g.

char ch;

ch = "abc".charAt(1);

• This assigns the value “b” to variable ch. 97

Prepared by Sharika T R, SNGCE

getChars()

• Used to extract more than one character at a time.

• General form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

• Here, sourceStart specifies the index of the beginning of the

substring, and sourceEnd specifies an index up to which

character need to be extracted.

– (the extracted substring contains the characters from sourceStart

through sourceEnd–1.)

• This extracted substring is stored at target array at location

targetStart.
98

Example program- getChars()

99

Prepared by Sharika T R, SNGCE

getBytes()

• Used to extract the characters in an array of bytes.

• it uses the default character-to-byte conversions.

• General form

byte[] getBytes()

• Most Internet protocols and text file formats use 8-bit

• ASCII for all text interchange.

100

toCharArray()

• Used to convert all the characters in a String object into a

character array.

• It returns an array of characters for the entire string.

• General form:

char[] toCharArray()

101

Prepared by Sharika T R, SNGCE

102

String Comparison

• The String class includes several methods that compare

strings or substrings within strings.

• equals()

• equalsIgnoreCase()

• regionMatches()

• startsWith()

• endsWith()

• equals() Versus ==

• compareTo()
103

Prepared by Sharika T R, SNGCE

equals()

• To compare two strings for equality, use equals()

• General form:

boolean equals(Object str)

• Here, String object str is compared with the invoking

String object.

• It returns true if the strings contain the same characters in

the same order, and false otherwise.

• The comparison is case-sensitive.

104

equalsIgnoreCase()

• This perform a comparison that ignores case

differences(not case sensitive)

• When it compares two strings, it considers A-Z to be the

same as a-z.

• General form:

boolean equalsIgnoreCase(String str)

105

Prepared by Sharika T R, SNGCE

106

regionMatches()

• The regionMatches() method compares a specific

region inside a string with another specific region in

another string.

• General forms:

107

Prepared by Sharika T R, SNGCE

• startIndex specifies the index at which the region begins

within the invoking String. The String to be compared is

specified by str2.

• The index at which the comparison will start within str2 is

specified by str2StartIndex. The length of the substring

being compared is passed in numChars.

• In the second version, if ignoreCase is true, the case of

the characters is ignored. Otherwise, case is significant.

108

startsWith() and endsWith()

• The startsWith() method determines whether a given

String begins with a specified string.

• Conversely, endsWith() determines whether the String in

question ends with a specified string.

109

Prepared by Sharika T R, SNGCE

110

equals() Versus ==

• equals() method and the == operator perform two

different operations.

• the equals() method compares the characters inside a

String object.

• The == operator compares two object references to see

whether they refer to the same instance.

111

Prepared by Sharika T R, SNGCE

112

compareTo()

• A string is less than another if it comes before the other in

dictionary order.

– E.g. “ant”<“bat” (ant comes before bat in dictionary)
• A string is greater than another if it comes after the other in

dictionary order.

– E.g. “bat”>“ant” (bat comes after ant in dictionary)
• compareTo() method in String is used for comparing two strings.

General form:

113

Prepared by Sharika T R, SNGCE

114

115

Prepared by Sharika T R, SNGCE

compareToIgnoreCase()

• compareToIgnoreCase() method is not case sensitive.

int compareToIgnoreCase(String str)

• This method returns the same results as compareTo(),

except that case differences are ignored.

116

117

Prepared by Sharika T R, SNGCE

Searching Strings

• The String class provides two methods to search a string

for a specified character or substring:

• indexOf() Searches for the first occurrence of a character

or substring.

• lastIndexOf() Searches for the last occurrence of a

character or substring.

– These two methods are overloaded in several different ways.

– In all cases, the methods return the index at which the

character or substring was found. If the character or substring

is not found then these method returns -1.
118

119

Prepared by Sharika T R, SNGCE

120

121

Prepared by Sharika T R, SNGCE

122

Modifying a String

• String objects are immutable(cannot change a string.)

• To modify a String, we must either

– copy it into a StringBuffer or StringBuilder, or

– use one of the following String methods:

substring()

concat()

replace()

trim()

123

Prepared by Sharika T R, SNGCE

substring()

124

125

Prepared by Sharika T R, SNGCE

concat()

126

replace()

127

Prepared by Sharika T R, SNGCE

trim()

128

129

Prepared by Sharika T R, SNGCE

130

Data Conversion Using valueOf()

131

Prepared by Sharika T R, SNGCE

132

133

Prepared by Sharika T R, SNGCE

134

Comparison of String Buffer and String.

• StringBuffer is a peer class of String that provides much

of the functionality of strings.

• String represents fixed-length, immutable character

sequences.

• StringBuffer represents growable and writeable character

sequences.

• StringBuffer may have characters and substrings inserted

in the middle or appended to the end.

• StringBuffer will automatically grow to make room for such

additions and often has more characters preallocated

than are actually needed, to allow room for growth.
135

Prepared by Sharika T R, SNGCE

136

137

Prepared by Sharika T R, SNGCE

StringBuffer Constructors

138

139

Prepared by Sharika T R, SNGCE

140

141

Prepared by Sharika T R, SNGCE

142

143

Prepared by Sharika T R, SNGCE

144

145

Prepared by Sharika T R, SNGCE

146

147

Prepared by Sharika T R, SNGCE

148

149

Prepared by Sharika T R, SNGCE

150

151

Prepared by Sharika T R, SNGCE

152

153

Prepared by Sharika T R, SNGCE

154

Syllabus

•Input/Output –

•I/O Basics, Reading Console Input, Writing Console Output,

PrintWriter Class, Object Streams and Serialization, Reading and

Writing Files.

•Java Library

•String Handling – String Constructors, String Length, Special

String Operations Character Extraction, String Comparison,

Searching Strings, Modifying Strings, Using valueOf(),

Comparison of StringBuffer and String.

•Collections framework

•Collections overview, Collections Class – ArrayList. Accessing

Collections via an Iterator.

Collections Framework

155

Prepared by Sharika T R, SNGCE

156

Collections Overview

• The Java Collections Framework standardizes the way in

which groups of objects are handled by our programs.

• The entire Collections Framework is built upon a set of

standard interfaces.

• Mechanisms were added that allow the integration of

standard arrays into the Collections Framework.

157

Prepared by Sharika T R, SNGCE

• The Collections Framework was designed to meet several

goals.

– First, the framework had to be high-performance.

• The implementations for the fundamental collections

(dynamic arrays, linked lists, trees, and hash tables) are

highly efficient.

– Second, the framework had to allow different types of

collections to work in a similar manner and with a high degree

of interoperability.

– Third, extending and/or adapting a collection had to be easy.
158

• Algorithms are an important part of the collection

mechanism.

– Algorithms operate on collections and are defined as static

methods within the Collections class.

• The algorithms provide a standard means of manipulating

collections.

• Java Collections Framework provides algorithm

implementations that are commonly used such as sorting,

searching etc.

– void sort(List list)

– int binarySearch(List list, Object value)
159

Prepared by Sharika T R, SNGCE

• Another item closely associated with the Collections

Framework is the Iterator interface.

• An iterator offers a general-purpose, standardized way of

accessing the elements within a collection, one at a time.

– An iterator provides a means of enumerating the contents of a

collection.

• Because each collection implements Iterator, the

elements of any collection class can be accessed through

the methods defined by Iterator

160

• The framework defines several map interfaces and

classes.

– Maps store key/value pairs.

• A map cannot contain duplicate keys.

• Although maps are part of the Collections Framework,

they are not “collections” in the strict use of the term

161

Prepared by Sharika T R, SNGCE

Recent Changes to Collections

• Collections Framework underwent a fundamental change

that significantly increased its power and streamlined its

use.

– The changes were caused by the addition of

• generics

• autoboxing/unboxing, and

• for-each style for loop.

162

163

Prepared by Sharika T R, SNGCE

The Collection Framework

164

The Collection Classes

• The collection classes implement collection interfaces.

• Some of the collection classes provide full

implementations that can be used as-is.

• Some of the collection classes are abstract, providing

skeletal implementations that are used as starting

points for creating concrete collections.

165

Prepared by Sharika T R, SNGCE

The standard collection classes are

166

ArrayList Class

167

Prepared by Sharika T R, SNGCE

168

169

Prepared by Sharika T R, SNGCE

170

171

Prepared by Sharika T R, SNGCE

Accessing Collections via an Iterator

172

173

Prepared by Sharika T R, SNGCE

174

175

Prepared by Sharika T R, SNGCE

176

Exceptions in methods

177

Prepared by Sharika T R, SNGCE

Using an Iterator

178

179

Prepared by Sharika T R, SNGCE

END OF MODULE 4

180

