Prepared by Sharika T R, SNGCE

CST281

Object Oriented Programming

MODULE 4
Advanced features of Java

*Input/Output —

*|/O Basics, Reading Console Input, Writing Console Output,

PrintWriter Class, Object Streams and Serialization, Reading and
Writing Files.

«Java Library

*String Handling — String Constructors, String Length, Special
String Operations Character Extraction, String Comparison,
Searching Strings, Modifying Strings, Using valueOf(),
Comparison of StringBuffer and String.

*Collections framework

*Collections overview, Collections Class — ArrayList. Accessing
Collections via an lterator.




Prepared by Sharika T R, SNGCE

|/O Basics

* Only print( ) and printin() are used frequently. All
other I/O methods are not used significantly.

— Because most real applications of Java are not text-based,
console programs.

» Java’s support for console I/O is limited

Java programs perform |I/O through streams.

A stream is an abstraction that either produces or
consumes information.

A stream is a sequence of objects that supports various
methods.

A stream is linked to a physical device by the Java I/O
system.

— Input stream may refer to different kinds of input: from a disk
file, a keyboard, or a network socket

— Output stream may refer to the console, a disk file, or a network4
connection.




Prepared by Sharika T R, SNGCE

Working of Java I/O stream

» Stream is like a flow of data.

D O
g =) I o]
File Console Socket File Console Socket
N | F N, |
\L/ InputStream 0 | OutputStream ‘
Source — 1ototoioto — , 3@ 1010101010 — Destination
| Application
Read Write

The java.io package contains all the classes required for
input and output operations.

Java defines two types of streams: byte and character.

Byte streams provides a means for handling input and
output of bytes.

— Byte streams are used when reading or writing binary data.
Character streams provide a means for handling input
and output of characters.

—they use Unicode.

— in some cases, character streams are more efficient than byte
streams.




Prepared by Sharika T R, SNGCE

ByteStream classes

Byte streams are defined by using two class hierarchies.
At the top are two abstract classes:
— InputStream and OutputStream.

Each of these abstract classes has several concrete
subclasses

— that handle the differences between various devices, such as
disk files, network connections, and even memory buffers.

Two of the most important are read( ) and write( ),
— These methods are overridden by derived stream classes.

ByteStream classes

ByteArayOutpuiStrean |
FleOutputStreem | BufferedOutputStream |
OutputSiream FlterOutpusStream DataOutputStream |
/ | ObectOuputStream | | PrirtSiream |
| PipedOutpuSiream |
ByteStream classes / J ByleArrayInputSiraam I - -
ButeradinputSream |
FilelnputStream
\ DatalrputStream |
FilterinputStraam
LinsNumberinpuStream |
| Inputstream ObjectnpuiStream |
PushbankinputStream |
Ppedinputtieam |
1 SequentialinputStream |
| StingBufiednpuiSream | 8




Prepared by Sharika T R, SNGCE

Stream Class

Meaning

BufferedinputStream

Buffered input stream

BufferedOutputStream  |Buffered output stream
ByteArraylnputStream Input stream that reads from a byte array
ByteArrayOutputStream | Output stream that writes to a byte array

DatalnputStream

An input stream that contains methods for reading the Java standard
data types

DataOutputStream

An output stream that contains methods for writing the Java standard
data types

FilelnputStream

Input stream that reads from a file

FileQutputStream Qutput stream that writes to a file
FilterlnputStream Implements InputStream
FilterOutputStream Implements OQutputStream

InputStream Abstract class that describes stream input
ObjectlnputStream Input stream for objects
ObjectOutputStream Qutput stream for objects

QutputStream Abstract class that describes stream output
PipedinputStream Input pipe

PipedOutputStream Qutput pipe

PrintStream

Qutput stream that contains print( ) and printin( )

PushbacklnputStream

Input stream that supports one-byte “unget,” which returns a byte to
the input stream

RandomAccessFile

Supports random access file 1/0

SequencelnputStream

Input stream that is a combination of two or more input streams that
will be read sequentially, one after the other

TaBLE 131

The Byte Stream Classes

hierarchies.

At the top are two abstract classes,

— Reader and Writer.

Character streams

Character streams are defined by using two class

Java has several concrete subclasses of each of these.
Two of the most important methods are read( ) and write( ).

— These methods are overridden by derived stream classes.

10




Prepared by Sharika T R, SNGCE

CharacterStream classes

ZAIDN

[ Reader ] [Wﬁter )
[ LineNumherReader BufferedReader —| Buferedwriter
CharirrayReader — ) CharArcayWriier )
— CutpusStreanWriter —{ FileWiter |

PushhackReader FilterReader —| FilterWriter
PipedReader PipedWriter
| { StringWriter
| PrintWriter

gll
g
g

Stream Class Meaning

BufferedReader Buffered input character stream
BufferedWriter Bufferad output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
Fil=Reader Input stream that reads from a file

FileWriter Output stream that writes to a file
FilterReader Filtered reader

FilterWriter Filtered writer

TABLE 132 The Character Stream 1/0 Classes




Prepared by Sharika T R, SNGCE

Stream Class

Meaning

InputStreamReader |Input stream that translates bytes to characters
LineMumberReader |Input stream that counts lines

OutputStreamWriter | Output stream that translates characters to bytes
PipedReader Input pipe

PipedWriter Qutput pipe

PrintWriter Output stream that contains print{ ) and printin{ )
PushbackReader Input stream that allows characters to be returned to the input stream
Reader Abstract class that describes character stream input
StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

TABLE 13-2 The Character Stream |/0 Classes jcontinued)

13

All Java programs automatically import the java.lang package.

The Predefined Streams

This package defines a class called System.

System contains three predefined stream variables:
— in, out, and err.
— These fields are declared as public, static, and final within System.

System.out refers to the standard output stream.
System.in refers to standard input, which is the keyboard by

default.

System.err refers to the standard error stream, which is the
console by default.

System.in is an object of type InputStream; System.out and
System.err are objects of type PrintStream.

14




Prepared by Sharika T R, SNGCE

Reading Console Input

» The preferred method of reading console input is to use a
character-oriented stream.

* In Java, console input is accomplished by reading from
System.in.

— To obtain a character based stream that is attached to the
console, wrap System.in in a BufferedReader object.

15
» BufferedReader supports a buffered input stream.
— Its most commonly used constructor is:

BufferedReader(Reader mputReader)

» Here, inputReader is the stream that is linked to the
instance of BufferedReader that is being created.

 Reader is an abstract class.




Prepared by Sharika T R, SNGCE

» One of the concrete subclasses of Reader is
InputStreamReader.
* InputStreamReader converts bytes to characters.

— It reads bytes and decodes them into characters using a
specified charset.

» To obtain an InputStreamReader object that is linked to
System.in, the constructor that can be used is :

InputStreamReader(InputStream mputStream)

» Following line of code creates a BufferedReader that is
connected to the keyboard:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

» By wrapping the System.in (standard input stream) in an
InputStreamReader which is wrapped in a BufferedReader,
we can read input from the user in the command line.

» After this statement executes, br is a character-based stream
that is linked to the console through System.in




Prepared by Sharika T R, SNGCE

Reading console-summary

To accept data from keyboard, we use System.in.
(bytestream)

We need to connect keyboard to an input stream object.

Here we can use InputStreamReader that can read data
from the keyboard

— convert byte stream to character stream
Now our data reaches InputSreamReader

BufferedReader class is used to read the text from a
character-based input stream.

« To make program run fast and to make reading efficient,

buffering can be done using BufferedReader class. It can
read data from stream.

» Create BufferedReader object and connect
InputStreamReader object to it

f’é’j;ﬁg‘;r';‘) > lInputStreamReader |> __ » BufferedReader

Byte stream---...... - character stream -------------- —> Buffer stream

InputStreamReaer in = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(in)

BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); 20




Prepared by Sharika T R, SNGCE

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

« System.in = keyboard(Byte stream)
* Convert byte steam to character stream using
InputStreamReader.

* Then wrap that character stream in a buffered stream
BufferedReader

Reading Characters

» To read a character from a BufferedReader, use read( ).
» The version of read( ) is
mt read() throws IOException

« Each time that read( ) is called, it reads a character from
the input stream and returns it as an integer value.

* |t returns —1 when the end of the stream is encountered




Prepared by Sharika T R, SNGCE

import java.io.*;
class Readinp

{

public static void main(String a[]) throws IOException

{

char c;

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter a letter");

c=(char)br.read();
System.out.printIn(“Letter="+c);

QUTPUT
Enter a letter
i a
! Letter=a 23

Enter characters one by one when you type q /g

it will stop reading s =2 java’

Enter characters, 'q' to quit.
class BRRead { 123abcq

public static void main(String args|[])

throws IOException
{

char c:
BufferedReader br = new
BufferedReader(new InputStreamReader(System.in));

00 T ® WM =

System.out.println("Enter characters, 'q’ to quit.");
/! read characters

do {
¢ = (char) br.read(); No input is actually passed to the program
System.out.println(c); until you
} while(c 1="q): press ENTER.




Prepared by Sharika T R, SNGCE

Reading Strings

» To read a string from the keyboard, use the version of

readLine( ) that is a member of the BufferedReader
class.

* Its general formis
— String readLine( ) throws IOException
» This returns a String object.

25

import java.io.™;

class Readinp

{

public static void main(String a[]) throws IOException

{

char c;

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter a line of text");

c=(char)br.read(); OUTPUT

Enter a line of text
How are you
System.out.println("Line is "+s)] Line is How are you

}
}

s=br.readLine();

26




Prepared by Sharika T R, SNGCE

Enter lines of text one by one when you type ()
stop it will stop reading — lava
import java.io.*; System.out.println("Lines are ");

class Readlinetillstop

{

public static void main(String a[]) throws [OException

{
String s[] = new String[100]:

for(int i=0; i<100; i++)

{

if(s[i].equals("stop")) break;
System.out.println(s[i]):

R

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter a line of text");

: : OUTPUT
System.out.printIn("Enter 'stop’ to quit."); Eifar s e o i
for(int i=0; i<100; i++) Enter 'stop' to quit.

what
l how are you
s[i] = br.readLine(); ok
: z ; Stop
if(s[i].equals("stop")) break; R
) what
how are you
ok - 27

Read console inputs

ufferedReader br = new BufferedReader(new InputStreamReader (System.in));
Single Characte charch = br.read ();
String str = br .readLine ();

String str = br .readLine ();
int n = Integer.parselnt (str);
int n = Integer.parseint (br .readLine ());

28




Prepared by Sharika T R, SNGCE

Writing Console Output

» Console output is usually done through print( ) and
printin().

» These methods are defined by the class PrintStream.
— It is the type of object referenced by System.out.
— System.out is a byte stream,

* PrintStream is an output stream derived from
OutputStream,
— PrintStream also implements the low-level method write( ).
— write( ) can be used to write to the console.

» The simplest form of write( ) defined by PrintStream is
« void write(int byteval)

— This method writes the byte specified by byteval to the stream

— byteval is declared as an integer, only the low-order eight bits
are written.




Prepared by Sharika T R, SNGCE

// Demonstrate System.out.write(). Write letter A’ to console.
class WriteDemo {

public static void main(String args[]) {

int b:

b="A"

System.out.write(b); OUTPUT
System.out.write("\n'); A

J
}

31

PrintWriter class

» For real-world programs, the recommended method of writing to
the console using Java is through a PrintWriter stream.

* PrintWriter is one of the character-based classes.
* PrintWriter defines several constructors.
PrintWriter(OutputStream outputStream, boolean flushOnNewline)

» Here, outputStream is an object of type OutputStream, and
flushOnNewline controls whether Java flushes the output stream
every time a printin( ) method is called.

— If flushOnNewline is true, flushing automatically takes place.
— If false, flushing is not automatic.

32




Prepared by Sharika T R, SNGCE

PrintWriter supports the print and printin( ) methods

If an argument is not a simple type, the PrintWriter
methods call the object’s toString( ) method and then print

the result.
To write to the console by using a PrintWriter, specify

System.out for the output stream and flush the stream
after each new line.

PrintWriter pw = new PrintWriter(System.out, true);

33

import java.io.*;
public class PrintWriterDemo |
public static void main(String args[])
{
PrintWriter pw = new PrintWriter(System.out, true):

pw.println("This is a string");

inti=-7:

T OUTPUT
pw.println(i); This is a string
— . -7
double d = 4.5e-7; 45E-7

pw.printin(d):

)




Prepared by Sharika T R, SNGCE

System.out
* System.out is a byte stream.

* System.out refers to the
standard output
stream(monitor).

* System: It is a final class
defined in the java.lang
package.

= out: This is an instance
of PrintStream type, which 1s

a public and static member
field of the System class.

PrintWritter

PrintWriter should be used to
write a stream of characters
PrintWriter 1s a subclass of
Writer (character stream class)
It is used in real world programs

to make it easier to
internationalize the program

35

Object Streams and Serialization

» Object streams support I/O(input-output) of objects
* The object stream classes are

— ObjectinputStream
— ObjectOutputStream

36




Prepared by Sharika T R, SNGCE

Serialization

 Serialization is the process of writing(converting) the state
of an object to a byte stream.

— This is useful when we want to save(store) the state of the
program to a persistent(permanent) storage area,

— such as a file or when we want to send it over network.

« Later we can restore these objects by using the process
of deserialization.
— Deserialization converts byte streams into object.




Prepared by Sharika T R, SNGCE

 Serialization is also needed to implement Remote Method
Invocation (RMI).

— RMI allows a Java object on one machine to invoke a method
of a Java object on a different machine.

— The sending machine serializes the object and transmits it.
— The receiving machine deserializes it.

39
« If we attempt to serialize an object at the top of an object
graph,
— all of the other referenced objects are recursively located and
serialized.
 Similarly, during the process of deserialization, all of these
objects and their references are correctly restored when

deserialization is done at the top.




Prepared by Sharika T R, SNGCE

* Interfaces and classes that support serialization are:
— Serializable
— Externalizable

41
Serializable

* Only an object that implements the Serializable interface
can be saved and restored by the serialization facilities.

* The Serializable interface defines no members.
* Itis simply used to indicate that a class may be serialized.

* |f a class is serializable, all of its subclasses are also
serializable.

* Variables that are declared as transient and static
variables are not saved by the serialization facilities.




Prepared by Sharika T R, SNGCE

-

-

Externalizable

» Much of the work to save and restore the state of an object occurs
automatically.
— The programmer may need to have control over these processes.
— it may be desirable to use compression or encryption techniques.
« The Externalizable interface is designed for these situations.
» The Externalizable interface defines two methods:

void readExternal(Objectnput inStream) throws [OException,
ClassNotFoundException

void writeExternal(ObjectOutput outStream) throws IOException

inStream is the byte stream from which the object is to be read

outStream is the byte stream to which the object is to be written 43

ObjectOutput

The ObjectOutput interface extends the DataOutput
interface and supports object serialization.

It defines the methods such as writeObject()
writeObject( ) method is called to serialize an object.

All of these methods will throw an IOException on error
conditions

44




Prepared by Sharika T R, SNGCE

Method Description

void close( ) Closes the invoking stream. Further write attempts will
generate an I0Exception.

void flush( ) Finalizes the output state so that any buffers are cleared.
That is, it flushes the output buffers.

void write(byte buffer 1) Writes an array of bytes to the invoking stream.

void write(byte buffer ], int offset, |Writes a subrange of numBytes bytes from the array buffer,

int numBytes) beginning at bufferi offsetl.

void write{int b) Writes a single byte to the invoking stream. The byte written
is the low-order byte of b.

void writeObject(Object obj) Writes object obj to the invoking stream.

The Methnds Nefined hv OhiectOutnut
45

ObjectOutputStream

» The ObjectOutputStream class extends the OutputStream class
and implements the ObjectOutput interface.

* It is responsible for writing objects to a stream.
A constructor of this class is

ObjectOutputStream (OutputStream outStream) throws IOException
— The argument outStream is the output stream to which serialized objects
will be written.
* Methods in this class will throw an IOException on error
conditions.

» There is also an inner class to ObjectOuputStream called
PutField.

— It facilitates the writing of persistent fields. *




Prepared by Sharika T R, SNGCE

ObjectOutputStream-methods

Method Description

void close( ) Closes the invoking stre am. Further write attempts will
generate an 10Exception.

void flush( ) Finalizes the output state so that any buffers are cleared.
That is, it flushes the output buffers.

void write(byte buffed | Writes an array of bytes to the invoking stream.

void write(byte buffer ], int offset, |Writes a subrange of numBytes bytes from the array buffer,

int numBytes) beginning at bufferfoffset].

void write(int b) Writes a single byte to the invoking stream. The byte
written is the low-order byte of b.

void writeBoolean(boolean b} Writes a boolean to the invoking stream.

void writeByte(int b) Writes a byte to the invoking stream. The byte written is
the low-order byte of b.

void writeBytes(String stn Writes the bytes representing strto the invoking stream.

void writeChar(int ¢) Writes a char to the invoking stream.

void writeChars(String str) Writes the characters in strto the invoking stream.

void writeDouble{double d) Writes a double to the invoking stream.

void writeFloat(float 1) Writes a float to the invoking stream.

void writelnt{int ) Writes an int to the invoking stream.

void writeLong(long /) Writes a long 1o the invoking stream.

final void writeObject(Object obj) Writes obj to the invoking stream. 47

void writeShort(int /) Writes a short to the invoking stream.

Objectinput

» The Objectinput interface extends the Datalnput
interface and defines the method such as readObject( )
method.

* This is called to deserialize an object.

* All of these methods will throw an IOException on error
conditions.

» The readObject( ) method can also throw
ClassNotFoundException

48




Prepared by Sharika T R, SNGCE

Objectinput-methods

Method Description

int available( ) Returns the number of bytes that are now available in the
input buffer.

void close( ) Closes the invoking stream. Further read attempts will
generate an I0Exception.

int read( ) Returns an integer representation of the next available byte
of input. =1 is returned when the end of the file is
encountered.

int read(byte buffer ] Attempts to read up to buffer.length bytes into buffer,

returning the number of bytes that were successfully read.
—1 is returned when the end of the file is encountered.

int read(byte buffer ], int offset, |Attempts to read up to numBytes bytes into buffer starting

int numBytes) at buffefoffset], returning the number of bytes that were
successfully read. —1 is returned when the end of the file is
encountered.
Object readObject( ) Reads an object from the invoking stream.
long skip(long numBytes) lgnores (that is, skips) numBytes bytes in the invoking

stream, returning the number of bytes actually ignored.

49

ObjectinputStream
» The ObjectinputStream class extends the InputStream class*and
implements the Objectinput interface.

* ObjectinputStream is responsible for reading objects from a
stream.

A constructor of this class is

ObjectInputStream (InputStream mStream) throws [OException

— The argument inStream is the input stream from which serialized objects
should be read.

» The methods will throw an IOException on error conditions.

* The readObiject() method can also throw
ClassNotFoundException.

» There is also an inner class to ObjectinputStream called GetFields,
It facilitates the readina of persistent fields




Prepared by Sharika T R, SNGCE

Working with Files

* In Java, all files are byte-oriented.
» Java provides methods to

— read bytes from a file and

— write bytes to a file.

51
« Two of the most often-used file stream classes are
* FilelnputStream
— FilelnputStream is an input stream to read data
— from a file in the form of sequence of bytes
* FileOutputStream
— FileOutputStream class is an output stream for

— writing data to a file




Prepared by Sharika T R, SNGCE

OPEN a file

» To open afile,

— create an object of one of these classes

— specify the name of the file as an argument to the constructor.
« If we want to open a file for reading

— Create object of FilelnputStream class

* If we want to open a file for writing
— Create object of FileOutputStream class

 Main constructors are

FileInputStream(String fileName) throws FileNotFoundException

FileOutputStream(String fileName) throws FileNotFoundException

* Here, fileName specifies the name of the file (as String
i.e. enclose in double quotes) that we want to open.
—When we create an input stream, if the file does not exist, then

FileNotFoundException is thrown.

— For output streams, if the file cannot be created, then
FileNotFoundException is thrown.

* When an output file is opened, any file that is already existing with the
same name as output file is destroyed 54




Prepared by Sharika T R, SNGCE

To open a file for reading

» We have to create FilelnputStream class object and pass
filename as the parameter to the constructor.

» E.g. to open the file Sample.ixt for reading
FilelnputStream fileobject;
fileobject = new FilelnputStream(“Sample.txt");

To open a file for writing

» We have to create FileOutputStream class object and
pass filename as the parameter to the constructor.

» E.g. to open the file Sample.txt for writing
FileOutputStream fileobject;
fileobject = new FileOutputStream(“Sample.txt");




Prepared by Sharika T R, SNGCE

Closing a file

 After completing file read or write operations, we should
close the file by calling close( ).

* |Itis defined by both FilelnputStream and
FileOutputStream :

void close( ) throws IOException

57
E.g. to close file Sample.txt opened for reading

FileInputStream fileobject;

fileobject = new FileInputStream(“Sample.txt");
//statements for reading the file

fileobject.close();




Prepared by Sharika T R, SNGCE

read a file

* To read data from a file,

— First, we have to create FilelnputStream class object and pass
flename as the parameter to the constructor.

E.g. FilelnputStream fileobject;

fileobject = new FileInputStream(“Sample.txt");

— Next,we can use a version of read( ) that is defined within

FileInputStream. int read( ) throws IOException

E.g. int c=fileobj.read();

« Each time read() called, it reads a single byte from the file
and returns the byte as an integer value.

—read( ) returns —1 when the end of the file is encountered.
— read() can throw an |IOException.

59

Write a program to read &display the contents in the file Sample.txt

import java.io.*;
class Readfile

[

public static void main(String arg[]) throws [OException

{

FileInputStream f;

try
{

f= new FileInputStream(“Sample.txt");

int c;
do {
c=f.read();
itf(c!=-1)

{ System.out.print((char)c); }
} while(c!=-1);

catch(FileNotFoundException e)
l
System.out.println("File not found"):
return;

l

f.close();

}
}

60




Prepared by Sharika T R, SNGCE

* In this program, to read the file, an object of
FileInputStream class is created.

FileInputStream f;
f= new FleInputStream(“Sample.txt");

» Here the argument of the constructor in FilelnputStream is
the name of the file to be read. Here “Sample.txt”

» The following statement read one byte from the file and
store in integer variable c

c=f.read();

» The following statement converts the integer variable ¢

into character using char(c) and print that character on the
output screen (console)

System.out.print((char)c);
 This continues until ¢ is equal to -1(end of file)




Prepared by Sharika T R, SNGCE

» Exceptions(run time error) lik FileNtotFoundException (if the given
flename is not in the system path) may occur during file
operations.

» So it is better to enclose file operation statements within try block
for handling exceptions.

« If the file we try to read a file that does not exist, then that
exception is caught by the following catch block and the
corresponding action in it is done.

Iy
//File Operation statements
}

catch(FileNotFoundException e)

{

System.out.println("File not found"); //print this message if file is not found 63

] 15

» To write to a file, we can use the write( ) method defined
by FileOutputStream.

void write(int byteval) throws |OException

— This method writes the byte specified by byteval to the file.

— Although byteval is declared as an integer, only the loworder
eight bits are written to the file.

— If an error occurs during writing, an IOException is thrown

64




Prepared by Sharika T R, SNGCE

Steps to write data to a file

* To write data from a file,

— First, we have to create FileOutputStream class object and
pass filename as the parameter to the constructor.

— Using write function store the byte value in file.eg:
mnt c=65;
FileOutputStream fileobject;
fileobject = new FileOutputStream (“Sample.txt");

fileobject.write(c);

* Here lower order will be stored. So this will store ASCII
value of 65 that is letter A in file Sample.txt 65

ILE COPY —copy contents from test.txt to cp.txt
-

{ public static void main(String a[]) throws IOException

{ do
FileInputStream f1=null;
FileOutputStream f2=null; c=f1.read();
if(cl=-1)
try
{ f2.write((char)c);
f1= new FileInputStream("test.txt"); }System.out.prlnt((char)c);
f2= new FileOutputStream("cp.txt"); Jwhile(cl=-1):

intc;
catch(FileNotFoundException e)

System.out.printin("File not found");

return; }

f1.close();

f2.close();

} 18 66

}




Prepared by Sharika T R, SNGCE

Working of file copy program

» For reading a file, FileInputStream object need to created.
— Here 1

FilelnputStream f1=null;
f1= new FilelnputStream("test.txt");

» For writing to a file, FileOutputStream object need to
created

— Here f2
FileOutputStream f2=null;
f2= new FileOutputStream("cp.txt");

c=fl.read():
if(cl=-1) f1(test.txt) and store in integer variable c.

{

f2 write((char)c);
System.out.print((char)c):

J

» This means that integer f1.read() reads a
single byte from file pointed by

* If cis not -1 (end-of-file) then c is
converted int character using(char)
casting.

f2.write((char)c);

» This statement writes the character
equivalent of c into file pointed by f2(cp.txt)

* This continues until c==- 68




Prepared by Sharika T R, SNGCE

FILE READ - file name given as command line areument

Execution: java Readcommandline test.txt
import java.io.*:

class Readcommandline
{
public static void main(String arg[]) throws [OException
{
FileInputStream f;
try
{
f= new FilelnputStream(arg[0]);
int ¢
do
{
c=f.read();
ific!=-1)
{ System.out.print((char)c); }
twhile(c!=-1);
H
catch(FileNotFoundException e)
{
System.out.printIn("File not found");
return;
} 69
f.close():}}

import java.1o.%:

class Writesentencefile

{

public static void main(String arg[]) throws IOException
{

FileOutputStream f;

String s:

4 e sl

f= new FileOutputStream("Sample.txt"); p::'l:::m:’::;;’{%*
s="Welcome to OOP";

byte b[]=s.getBytes(): //converting string into byte array

f.write(b); ' —

f.owrite(66); /I write lower bytes. Here we will get ASCII vlue of 66 i.e. letier B

}

catch(FileNotFoundException ¢)

{

System.out.printin("File not found"):
return;

]
f.close(): 70

I




Prepared by Sharika T R, SNGCE

FileReader

* The FileReader class creates a Reader that we can use
to read the contents of a file.

* Its two most commonly used constructors are shown
here:

FileReader(String filePath)

FileReader(File fileObj)

— They can throw a FileNotFoundException. Here, filePath is the
full path name of a file, and fileObj is a File object that
describes the file.

» The following example shows how to. It reads its own
source file, which must be in the current directory.

Read lines from a file and print these to the standard output stream
using FileReader

import java.io.*;
class FileReaderDemo |
public static void main(String args|[]) throws IOException
{
FileReader fr = new FileReader("Sample.txt");
BufteredReader br = new ButferedReader(fr);
String s:
while((s = br.readLine()) != null)
{
System.out.println(s);
}

fr.close():

}

- L 72
J




Prepared by Sharika T R, SNGCE

» FileWriter creates a Writer that you can use to write to
file.

* Its most commonly used constructors are:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWniter(File fileOby)

FileWniter(lile fileObj, boolean append)

— They can throw an IOException. Here, filePath is the full path
name of a file, and fileObj is a File object that describes the file.

— If append is true, then output is appended to the end of the file. »

 FileWriter will create the file before opening it for output
when you create the object.

— In the case where we attempt to open a read-only file, an
IOException will be thrown.

» getChars( ) method is used to extract the character array
equivalent.

public void getChars(int srhStartIndex, int srhEndIndex,
char[] destArray, int destStartIndex)

Parameters:
srhStartIndex : Index of the first character in the string to copy.

srhEndIndex : Index after the last character in the string to copy.
destArray : Destination array where chars wil get copied.

destStartIndex : Index in the array starting from where the chars will be 74
pushed into the array. Return: It does not return any value.




Prepared by Sharika T R, SNGCE

Write a string to file using FileWriter

import java.io.*;
class FileWriterSimple

{

public static void main(String args[]) throws IOException
{
String source = "Welcome to OOP class\n" + " Study well";

char buffer[] = new char[source.length()]: / allocate space equal to length of string

source.getChars(0, source.length(), buffer, 0);

/{copy the characters from position 0 to whole length(end) to buffer at position 0.

FileWriter f1 = new FileWriter("filel.txt");
f1.write(buffer):
fl.close():

}
} 27

75

Append a string to file using FileWriter
import java.io.*;
class FileWriterSimple

{

public static void main(String args[]) throws IOException

{

String source = "Welcome to OOP class\n" + " Study well";

char buffer[] = new char[source.length()]; 1 aitocate space equal to length of string

source.getChars(0, source.length(), buffer, 0);

/fcopy the characters from position 0 to whole length({end) from source
//to buffer at /position 0.

FileWriter f1 = new FileWriter("filel.txt",true): /append the contents
f1.write(buffer);
f1.close():

}
}

76




Prepared by Sharika T R, SNGCE

*Input/Output —
+l/O Basics, Reading Console Input, Writing Console Output,
PrintWriter Class, Object Streams and Serialization, Reading and
Writing Files.

«Java Library

*String Handling — String Constructors, String Length, Special
String Operations Character Extraction, String Comparison,
Searching Strings, Modifying Strings, Using valueOf(),
Comparison of StringBuffer and String.

*Collections framework

*Collections overview, Collections Class — ArrayList. Accessing
Collections via an lterator. 77

String Handling

String is a class in Java.
Java implements strings as objects of type String.
— The String type is used to declare string variables

Java has methods to compare two strings, search for a
substring, concatenate two strings, and change the case
of letters within a string.

A quoted string constant(E.g. “hello”) can be assigned to
a String variable.

» A variable of type String can be assigned to another
variable of type String. .




Prepared by Sharika T R, SNGCE

String Constructors

» The String class supports several constructors.
» To create an empty String, call the default constructor.
String()
— For example,
String s = new String();
— This will create an instance of String with no characters in it.

79

» To create a String initialized by an array of characters,
use the constructor

String(char chars| |)

« Example:

char letters|[] = {'a, b, 'c' };

String s = new String(letters);

 This constructor initializes s with the string “abc”.

80




Prepared by Sharika T R, SNGCE

« To initialize a string with a subrange of a character
array(substring) the following constructor is used:

String(char chars[ ], int startindex, int numChars)

— Here, startindex specifies the startindex at which the subrange begins,
and

— numChars specifies the number of characters to use.
- E.g.
char chars[] ={'a", 'b', 'c', 'd", 'e', 'f' };
01 2 3 45
String s = new String(chars, 2, 3);

» This initializes s with the characters starting from index 2 and
number of letters =3. i.e. s will contain cde.

* We can construct a String object that contains the same character
sequence as another String object using this constructor:

String(String strObj)

/I Construct one String from another.

class MakeString {

public static void main(String args[]) OUTPUT
{ Java
Chal’ c[:I — {!JF’ iai, 'V'. !a!}; Ja\"a

String s1 = new String(c);
String s2 = new String(sl);
System.out.println(s1);
System.out.println(s2);




Prepared by Sharika T R, SNGCE

« String class provides constructors that initialize a string
when given a byte array. Their forms are shown here:

String(byte asciiChars/ |)

String(byte asciiChars/ |, int startindex, int numChars)

» Here asciiChars specifies the array of bytes.

— In each of these constructors, the byte-to-character conversion
is done by using the default character encoding of the platform.

class SubStringCons {

public static void main(String args|[])

{

byte ascii[| = {65, 66, 67, 68, 69, 70 }.

String s1 = new String(ascii); OUTPUT
; oo ABCDEF

System.out.println(s1); CDE

String s2 = new String(ascii, 2, 3);
System.out.println(s2):

J

}




Prepared by Sharika T R, SNGCE

* We construct a String from a StringBuffer by using the
constructor :

String(StringBuftter strBufObyj)

+ J2SE 5 added two constructors to String.

~ The first supports the extended Unicode character set :

String(int codePointsf ], int startIndex, int numChars)

— Here, codePoints is an array that contains Unicode code points

# The second new constructor supports the new StringBuilder
class:-

String(StringBuilder strBuildObj)

— This constructs a String from the StringBuilder passed in
strBuildObj.

85

String Length

» The length of a string is the number of characters in the

string
» E.g. length of the string “hello” is 5

« The method length() is used to find the length of the

String. class Stringlen
int Iength( ) public static poid main(String args[])

{
String s="Hello";

System.out.println("Length="+s.length()):
}

OUTPUT
Length=5




Prepared by Sharika T R, SNGCE

Special String Operations

* These operations include

— the automatic creation of new String instances(object) from
string literals

— concatenation of multiple String objects by use of the +
operator, and

— the conversion of other data types to a string representation.

String Literals

» Java automatically constructs a String object for each string literal
in our program,.
— So we can use a string literal to initialize a String object

String s2 = "abc";

is same as

char chars[] = { 'a’, 'b", '¢' };

String s2 = new String(chars);

« We can use a string literal at any place where we use a String
object.

 String literals can call the length( ) method on the string
E.g.
System.out.printin("abc".length());




Prepared by Sharika T R, SNGCE

String Concatenation

 String concatenation is used to join two strings

* Method 1:The + operator can be used between strings to combine
them. This is called concatenation.

» Operator + can be chained to concatenate many strings
String age ="9";

String s = "He 1s " + age + " years old.";

System.out.println(s);

» This fragment displays the string He is 9 years old.

* Instead of letting long strings wrap around within our source code,
we can break them into smaller pieces, using the + to concatenate
them 89

String Concatenation with Other Data Types

» We can concatenate strings with other types of data.

* If one of the operand of the + is an instance of String then
compiler will convert other operand to its string equivalent.

String s = "four: "+ 2 + 2;

System.out.println(s);

— This fragment displalys
four: 22

— Operator precedence causes the concatenation of “four” with 2. So 2is
converted into string and “four: ” concatenates with string equivalent of 2.

— Then this result is then concatenated with the string equivalent of 2.

» Parentheses can be used for grouping integers and + to perform
addition.  String s = "four: " + (2 + 2):

— Here parentheses is first computed. So (2+2) is 4 then string “four: ™ is
concatenated with that. So s contains the string **four: 4"




Prepared by Sharika T R, SNGCE

String Conversion and toString( )

 When Java converts data into its string representation
during concatenation, it calls one of the overloaded
versions of the string conversion method valueOf( ) by
class String.

« valueOf( ) is overloaded for all the simple types and for
type Object
— For the simple types, valueOf( ) returns a string that contains

the human-readable equivalent of the value with which it is
called.

— For objects, valueOf( ) calls the toString( ) method on the
Object. 91

String Conversion and toString( )

The valueOf() returns the string representation of the corresponding
argument. Different overloaded form of valueOf() in String class.

* valueOf(boolean b) — Returns the string representation of boolean
argument.

* valueOf(char ¢) — char argument.
* valueOf(char|[]| data) char array argument.

* valueOf(char[] data, int offset, int count) — specific subarray of
the char array argument.

* valueOf(double d) — double argument.
* valueOf(float f) — float argument.

* valueOf(int i) — int argument.

* valueOf(long l) — long argument.

* valueOf(Object obj) — Object argument. (calls toString() method of 92
the class Object(parent class of all classes n Java)




Prepared by Sharika T R, SNGCE

The toString( ) method has this general form:

String toString( )

When we try to print an object of a class, it will call method

valueOf(object) which calls toString( ) function :-
— 1f toString( ) is present (overridden) in the class, then it is called.

— It there is no toString( ) function in the class, when we try to

print an object of that class, it prints clasname(@the memory
location of the object(the hexidecimal address of where that object is

stored in memory.) 93

Without using toString()

class Box { class toStringDemo {
public static void main(String args[]) {

double width; Box b = new Box(10, 14,12);
double height; String s = "Box b: "+ b;
double depth;

System.out.printin(b);
Box(double w, double d. double h,) { System.out.printin(s);

width = w; i
height = h;
depth = d; OUTPUT
} Box@106d69c¢
. . . Box b: Box@1db9742
publie StringtoStrinsO-{
1 Here when we print the object b ,since there is no toString( ) function in
) the class it will call toString() in class Object and prints clasname@the

memory location of the object
(Here it prints Box@106d69c)

94




Prepared by Sharika T R, SNGCE

Using toString()

class Box |
double width;

double height: class StringDemo {

double depth:; public static void main(String args[])
Box(double w, double d. double h,) épx b = new Box(10, 14,12);

{ String s = "Box b: "+ b;

width = w; System.out.printin(b);

depth = d: System.out.printin(s);

height = h; i

! . . . OUTPUT

public String toString() Dimensions are 10.0 by 14.0 by 12.0

{ Box b: Dimensions are 10.0 by 14.0 by 12.0

return "Dimensions are " + width + " by " + depth + " by " + height + "."

.
il

} Class Box's toString( ) method is automatically invoked
g Y

} when a Box object is used in a concatenation expression or

used in printin().

95

Character Extraction

The String class provides the following methods through

which characters can be extracted from a String object.

charAt()
getChars()
getBytes()
toCharArray( )

96




Prepared by Sharika T R, SNGCE

* Used to extract a single character from a String

» we can refer directly to an individual character via the
charAt( ) method.

» General form:
char charAt(int where)
» Here where is the index of the character that you want to

obtain. e.g.
char ch; abe
ch = "abc".charAt(1); index 012

* This assigns the value “b” to variable ch.

* Used to extract more than one character at a time.
 General form;

void getChars(int sourceStart, int sourcekind, char target| |, int targetStart)

* Here, sourceStart specifies the index of the beginning of the
substring, and sourceEnd specifies an index up to which
character need to be extracted.

— (the extracted substring contains the characters from sourceStart
through sourceEnd-1.)

* This extracted substring is stored at target array at location
targetStart.




Prepared by Sharika T R, SNGCE

Example program- getChars( )

class getCharsDemo |

public static void main(String args[]) {
String s = "This is a demo program”;
int start = 10;

intend = 14;

char buf]] = new char[end - start];
s.getChars(start, end, buf, 0);
System.out.println(buf);

w OYSEEEEDEODINOSEFEE

} 012 3 4 56 78 91011 121314 151617 1812 20 21

This program will extract characters in string s from index
10 to 14-1(13) and store in character array buf and prints
it.

QUTPUT
demo & 99

getBytes( )

» Used to extract the characters in an array of bytes.
* it uses the default character-to-byte conversions.

» General form

byte| | getBytes()

» Most Internet protocols and text file formats use 8-bit
« ASCII for all text interchange.

100




Prepared by Sharika T R, SNGCE

toCharArray( )

» Used to convert all the characters in a String objectinto a
character array.

* |t returns an array of characters for the entire string.

* General form:
char[ ] toCharArray()

101

public class CharArrayEg{ \

public static void main(String args[]){
String str = new String("Welcome to OOP");
char[] a= str.toCharArray();
System.out.print("Content of a is:");
for(char c: a)]

System.out.print(c);

——

OUTPUT
} Content of a is: Welcome to OOP

102




Prepared by Sharika T R, SNGCE

String Comparison

» The String class includes several methods that compare
strings or substrings within strings.

» equals()

» equalsignoreCase()
* regionMatches()

« startsWith()

» endsWith()

» equals() Versus ==
« compareTo()

103

» To compare two strings for equality, use equals( )
» General form:
boolean equals(Object str)

» Here, String object str is compared with the invoking
String object.

* It returns true if the strings contain the same characters in
the same order, and false otherwise.

» The comparison is case-sensitive.

104




Prepared by Sharika T R, SNGCE

equalsignoreCase( )

» This perform a comparison that ignores case
differences(not case sensitive)

* When it compares two strings, it considers A-Z to be the
same as a-z.

» General form:
boolean equalslgnoreCase(String str)

105

class equalsDemo { '
public static void main(String args|]) {

String s1 = "Hello";

String s2 = "Hello";

String s3 = "Good-bye";

String s4 = "HELLO";

System.out.println(s] + " equals " +s2 + " is " + sl.equals(s2));
System.out.println(s] + " equals " +s3 + " is " + sl.equals(s3));
System.out.println(s] + " equals " +s4 + " is " + sl.equals(s4));
System.out.println(s! + " equalslgnoreCase " + s4 + " is " +sl.equalslgnoreCase(s4)):
J
j

Hello equals Hello is true
Hello equals Good-bye is false
Hello equals HELLO is false
Hello equalsignoreCase HELLO is true 06




Prepared by Sharika T R, SNGCE

regionMatches( )

* The regionMatches() method compares a specific
region inside a string with another specific region in
another string.

* General forms:

boolean regionMatches(int startIndex, String str2,

int str2StartIndex, int numChars)

boolean regionMatches(boolean ignoreCase, int startIndex,
String str2, int str2StartIndex, int numChars)

107

» startindex specifies the index at which the region begins
within the invoking String. The String to be compared is
specified by str2.

* The index at which the comparison will start within str2 is
specified by str2Startindex. The length of the substring
being compared is passed in numChars.

* In the second version, if ignoreCase is true, the case of
the characters is ignored. Otherwise, case is significant.

108




Prepared by Sharika T R, SNGCE

startsWith( ) and endsWith( )

» The startsWith( ) method determines whether a given
String begins with a specified string.

» Conversely, endsWith( ) determines whether the String in
question ends with a specified string.

General forms:
boolean startsWith(String s7r)

boolean endsWith(String sfr)

System.out.println(“Football".endsWith(''ball'"));
This prints true. (because bar comes at the end of string Football
System.out.println("" Football ".startsWith(''Foo"));

This prints true. (because Foo comes at the beginning of string
Football 109

* A second form of startsWith( ), specify a starting point:

boolean startsWith(String sfr; int startlndex)

* Here, startindex specifies the index into the invoking
string at which point the search will begin.

* For example,

System.println("Football".startsWith("ball", 4));
— This prints true.

110




Prepared by Sharika T R, SNGCE

equals( ) Versus ==

 equals( ) method and the == operator perform two
different operations.

 the equals( ) method compares the characters inside a
String object.

» The == operator compares two object references to see
whether they refer to the same instance.

111

class EqualsNotEqualTo

{

public static void main(String args|])

{

String s1 = "Hello";

String s2 = new String(s1):

System.out.println(s1 + " equals " + s2 + " is " + sl.equals(s2)):
System.out.println(s] +"=="+s2 +" 18" + (sl ==s2));

}

) OUTPUT
Hello equals Hello is true
Hello = = Hello is false

112




Prepared by Sharika T R, SNGCE

compareTo( )

» A string is less than another if it comes before the other in
dictionary order.

— E.g. “ant’<“bat” (ant comes before bat in dictionary)

» A string is greater than another if it comes after the other in
dictionary order.

— E.g. “bat”>“ant” (bat comes after ant in dictionary)

« compareTo( ) method in String is used for comparing two strings.
General form: -

int compare To(String str)

Value Meaning

Less than zero The invoking string is less than str.

Greater than zero The invoking string is greater than str.

113

Zero. The two strings are equal

class CompareToEg
{
public static void main(String args[]) {
String s1="ant";
String s2="bat";
if(sl.compareTo(s2) < )
{ System.out.println(s] + " comes before "+s2);
]
else if(sl.compareTo(s2) > ()
{System.out.println(s1 + " comes after"+s2);

| OUTPUT
else ant comes before bat

System.out.println(sl + " is same as "+s2);

114
}




Prepared by Sharika T R, SNGCE

Bubblesort to sort strings

class SortString {

static String arr[] = {"This", "is", "best", "time". "for", "all"};
public static void main(String args[]) {

for(inti= 0; i < arr.length; i++)

{

for(int j =i+ 1;j < arrlength; j++) OUTPUT
{ This
if(arr[j].compareTo(arr[i]) < 0) all
( best
for
String temp = arr[i]: is
arr[i] = arr[j]; time
arr[j] = temp;

1
}
System.out.printIn{arr[i]);

}

} 115
}

compareTolgnoreCase( )

« compareTolgnoreCase( ) method is not case sensitive.
int compareTolgnoreCase(String str)

» This method returns the same results as compareTo( ),
except that case differences are ignored.

116




Prepared by Sharika T R, SNGCE

Using compareTolgnoreCase Using compareTo (
class CompareTolgnoreEg { class CompareToEg| é_} lava
public static void main(String args[]) { public static void main(String args[]) {
String s1="ant"; String s1="ant";
String s2="Hat"; String s2="Hat";
if(s1.compareTolgnore Case(s2) < 0) if(sl.compareTo (s2) < 0)

{System.out.println(s1 + " is before "+s2); {System.out.println(s1 + " is before "+s2);

} }

else if(s1.compareTolgnoreCase(s2) > 0) else if(sl.compareTol (s2) > 0)
{System.out.println(s1 + " is after"+s2); {System.out.println(s1 + " is after"+s2);
} }

else else

System.out.println(s1 + " is same as "+s2);

}
} }
} OUTPUT
OUTPUT

ant is before Hat

System.out.println(s] +" is same as "+s2):

ant is after Hat

17

Searching Strings

» The String class provides two methods to search a string
for a specified character or substring:

 indexOf( ) Searches for the first occurrence of a character
or substring.

« lastindexOf( ) Searches for the last occurrence of a
character or substring.

— These two methods are overloaded in several different ways.

— In all cases, the methods return the index at which the

character or substring was found. If the character or substring
is not found then these method returns -1.
118




Prepared by Sharika T R, SNGCE

To search for the first occurrence of a character, use
int indexOf(int ch)
To search for the last occurrence of a character, use
int lastIndexOf(int ch)
— Here, ch is the character being searched.
To search for the first or last occurrence of a substring, use
int indexOf(String str)
int lastIndexOf(String sir)

— Here, str specifies the substring.

119

We can specify a starting point for the search using :

int indexOf(char ch, int startIndex)
int lastindexOf(char ch, int startIndex)
int indexOf(String str, int startindex)

int lastindexOf(String sfr, int startIndex)

Here startindex specifies the index at which point the search begins

For indexOf( ), the search runs from startlndex to the end of the
string.

For lastIndexOf{( ), the search runs from startIndex to zero.

120




Prepared by Sharika T R, SNGCE

L5

class indexOfDemo | —

public static void main(String args|[]) {

String s = “This is a pen. This is a pencil.";

System.out.println(s);

System.out.println("indexOf(i) = " +s.index Of('1'));
System.out.println("lastIndexOf(1) =" +s.lastIndexOf('1));
System.out.println("indexOf(This) =" +s.indexOf("This"));
System.out.println("lastIndexOf(This) = " +s.lastIndexOf("This"));
System.out.println("indexOf(i, 10) =" +s.indexOf('1', 10));
System.out.println("lastindexOf(i, 23) = " + s.lastIndexOf('1', 23));
System.out.println("indexOf(This, 10) =" + s.indexOf("This", 10));
System.out.println("lastindexOf(This, 13) =" + s.lastIndexOf("This", 13));
)

}

121

Tihl1fs| |1fs| |a| [p|c|n|. T|his|is alpeﬂcilJ

O [ 23456 7 8 0 1011 1213141516 17 1515202122 23 24 25 26 27 2§ 29 30 31
This is a pen. This is a pencil.

indexOf(i) =2
lastIndexOf(i) = 29
indexOf(This) =0
lastIndexOf(This) = 15
indexOf(1, 10)= 17
lastIndexOf(i, 23) = 20
indexOf(This, 10)= 15
lastIndexOf(This, 13)=0

122




Prepared by Sharika T R, SNGCE

Modifying a String

« String objects are immutable(cannot change a string.)

» To modify a String, we must either
— copy it into a StringBuffer or StringBuilder, or
— use one of the following String methods:

substring()
concat()
replace()
trim()

123

* We can extract a substring using substring( ).

* [t has two forms.
— The first is

String substring(int startIndex)

* Here, startindex specifies the index at which the substring will
begin. This form returns a copy of the substring that begins at
startIndex and runs to the end of the invoking string.

— The second form of substring( ) allows to specify both the
beginning and ending index of the substring:

String substring(int startIndex, int endIndex)

* Here, startIndex specifies the beginning index, and endIndex specifies the
stopping point.

* The string returned contains all the characters from the beginning index, up
to, but not including, the ending index.

124




Prepared by Sharika T R, SNGCE

Modifying a String(contd.) 1
class. Strmngep.lace { . ‘:.____,: l ava’
public static void main(String args[]) {

String org = "This is a test. This is, too.";
String search = "is";

T

String sub = "was";

String result =""; OUTPUT
int i; This is a test. This is, too.
do { Thwas is a test. This is, too.
B it Thwas was a test. This is, too.
y nLp L Thwas was a test. Thwas is, too.
i = org.indexOf(search); Thwas was a test. Thwas was, too.
if(i!=-1) {

result = org.substring(0, 1):
result = result + sub;

result = result + org.substring(i + search.length());

org=resul. This is a test. This is, t oo.

} 0 12345 67 891011121314151617 18 1920 21 22232425 26 27 28

} while(i = -1);

] - 125

* We can use concat() method to concatenate two strings.

String concat(String sfr)

* This method creates a new object that contains the invoking
string with the value of str appended to the end of it.

* concat( ) performs the same function as +.
*  For example,
String s1 = "one"; /I string s1 contains”one™
String s2 = sl.concat("two");
— Here sl is the invoking string that call the function concat() .

— sl contains “one™ and is concatenated with argument string value
“two” and form the string “onetwo”. This result is stored in the
String object s2 126




Prepared by Sharika T R, SNGCE

replace( )

replace( ) -The replace( ) method has two forms.

1. The first form replaces all occurrences of one character in
the invoking string with another character.

String replace(char original, char replacement)

— Here, original specifies the character that will be replaced by the
character specified by replacement.

— The resulting string is returned.
String s = ""Hello".replace('l', 'w');
— Here letter | is replaced by w. So “Hewwo" is put into String object s.

2. The second form of replace( ) replaces one character
sequence with another.

String replace(CharSequence original, CharSequence replacement)

This form was added by J2SE 5. 197

* The trim( ) method returns a copy of the invoking string after
removing any leading and trailing whitespace

* (General form:

String trim( )

String s="" Hello World ".trim();
— This puts the string ""Hello World" into s.

* The trim( ) method is quite useful when we process user
commands.

128




Prepared by Sharika T R, SNGCE

* E.g. Write a program that prompts the user to enter the

name of a state(Assam.Goa etc) and then displays that

state’s capital. Use trim( ) to remove any leading or

trailing whitespace that may have inadvertently been

entered by the user.

129

import java.io.*;
class UseTrim {

public static void main(String args[]) throws
IOException
{

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

String str;
System.out.printIn("Enter 'stop' to quit.");

do {

System.out.println("Enter the State: ");

str = br.readLine();

str = str.trim();

if(strequals(“Assam"))
System.out.println{"Capital is Dispur");

else if(strequals(*Goa"))
System.out.println("Capital is Panaji");

else if(strequals(“Bihar"))
System.out.println("Capital is Patna.");

else

System.out.printIn("Capital is not entered");
} while(!str.equals("stop™));

) 130




Prepared by Sharika T R, SNGCE

Data Conversion Using valueOf( )

The valueOf( ) method converts data from its internal format
into a human-readable form.

It is a static method.

valueOf( ) is overloaded for all the simple types and for type
Object

— For the simple types. valueOf( ) returns a string that

contains the human-readable equivalent of the value

with which it is called.

— For objects, valueOf( ) calls the toString( ) method on the

Object.
131

The valueOf() returns the string representation of the
corresponding argument. Different overloaded form of valueOf{()
in String class.

* valueOf(boolean b) — Returns the string representation of boolean
argument.

« valueOf(char ¢) — char argument.
« valueOf(char[] data) char array argument.

+ valueOf(char[]| data, int offset, int count) — specific subarray of
the char array argument.

« valueOf(double d) — double argument.
+ valueOf(float f) — float argument.

¢ valueOf(int i) — int argument.

* valueOf(long l) — long argument.

+ valueOf(Object obj) — Object argument. (calls toString() method of
the class Object(parent class of all classes n Java)

132




Prepared by Sharika T R, SNGCE

* valueOf( ) is called when a string representation of some

other type of data is needed

— example, during concatenation operations

* Any object that we pass to valueOf( ) will return the result of

a call to the object’s toString( ) method.

* For most arrays, valueOf( ) returns a rather cryptic string,
which indicates that it is an array of some type.

* For arrays of char, however, a String object is created that

contains the characters in the char array

133

Changing the Case of Characters Within a String t_f_) lava“

* String toLowerCase( )

« String toUpperCase( )

class ChangeCase |

public static void main(String args[])
{

String s = "This is a test.";
System.out.println("Original: " + s):
String upper = s.toUpperCase():
String lower = s.toLowerCase();

OUTPUT

Criginal: This is a test.
Uppercase: THIS IS ATEST.
Lowercase: this is a test.

System.out.println("Uppercase: " + upper);

System.out.println("Lowercase: " + lower);

}
}

134




Prepared by Sharika T R, SNGCE

Comparison of String Buffer and String.

StringBuffer is a peer class of String that provides much

of the functionality of strings.

String represents fixed-length, immutable character

sequences.

StringBuffer represents growable and writeable character

sequences.

StringBuffer may have characters and substrings inserted
in the middle or appended to the end.

StringBuffer will automatically grow to make room for such

additions and often has more characters preallocated

than are actually needed, to allow room for growth.

135

String

* String is immutable.

* String represents fixed-
length, immutable character
sequences.

* Concatenation using String is
slow.

* String class can override
equals() method.

StringBuffer

StringBuffer represents
growable and  writeable
character sequences

Concatenation using
StringBuffer is fast.

StringBuffer class doesnot
override equals() method.

(S :
=’ Java
StringBuffer is mutable.

136




Prepared by Sharika T R, SNGCE

String str = "Hello World";
str = "Hi World!":

* Here an object is created using string literal “Hello
World™.

* In second statement when we assigned the new string
literal “Hi World!™ to str, the object itself didn’t change
instead a new object got created in memory using string
literal “Hi World!” and the reference to it is assigned
to sftr.

137

StringBuffer Constructors

* StringBuffer defines these four constructors:
StringBufter( )

StringBuffer(int size)

StringBuffer(String sr)
StringBuffer(CharSequence chars)

* The default constructor (the one with no parameters) reserves
room for 16 characters without reallocation.

138




Prepared by Sharika T R, SNGCE

length( ) and capacity( )
* The current length of a StringBuffer can be found via the
length( ) method.
* The total allocated capacity can be found through the
capacity( ) method.
int length( )
int capacity( )
class StringBufferDemo {

public static void main(String args[]) { OUTPUT
StringBuffer sb = new StringBuffer("Hello"); | buffer = Hello
System.out.printIn("buffer =" + sb); Ienglh_ =5
System.out.println("length =" + sb.length()); capacity = 21

System.out.println("capacity =" + sb.capacity()):

I Here capacity is 21 because room for 16 additional
I characters is automatically added to value Hello 139

ensureCapacity( )
+ ensureCapacity( ) is used to set the size of the buffer.

* This is useful if we know in advance that we will be appending

a large number of small strings to a StringBuffer.

void ensureCapacity(int capacity)

* Here. capacity specifies the size of the buffer.

140




Prepared by Sharika T R, SNGCE

=

setLength( )

* Used to set the length of the buffer within a StringBuffer
object.

void setLength(int len)

Here len specifies the length of the buffer. This value must be
nonnegative.

* When we increase the size of the buffer, null characters are
added to the end of the existing buffer.

» If we call setLength( ) with a value less than the current

value returned by length( ), then the characters stored
bevond the new length will be lost.

141

* charAt() and setCharAt( )

* The value of a single character can be obtained from a
StringBuffer via the charAt( ) method.

* We can set the value of a character within a StringBuffer
using setCharAt( ).

char charAt(int where)

void setCharAt(int where, char ch)

142




Prepared by Sharika T R, SNGCE

class setCharAtDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("Hello");
System.out.println("bufter before = " + sb);
System.out.println("charAt(1) before = " + sb.charAt(1));
sb.setCharAt(1, 'i");

sb.setLength(2);

System.out.println("bufter after =" + sb);
System.out.println("charAt(1) after =" + sb.charAt(1));

) QUTPUT

} buffer before = Hello
charAt(1) before = e
buffer after = Hi
charAt(1) after =i

143

———

* getChars( )

* Used to copy a substring of a StringBuffer.

void getChars(int sourceStart, int sourceEnd, char target/ ],

int rargetStart)

144




Prepared by Sharika T R, SNGCE

= ki

append( )

* The append( ) method concatenates the string representation
of any other type of data to the end of the invoking
StringBuffer object.

StringBuffer append(String str)

StringBuffer append(int num)

StringBuffer append(Object 0bj)

« String.valueOf( ) is called for each parameter to obtain its
string representation. The

* The result is appended to the current StringBuffer object.

* The buffer itself is returned by each version of append( ).

— append() calls can be chained 145

class appendDemo { - = jJavi

public static void main(String args[]) {

String s:

inta=42;

StringBuffer sb = new StringBuffer(40);

s = sb.append("a =").append(a).append("!").toString():
System.out.println(s);

}

}
Output

a=42!

146




Prepared by Sharika T R, SNGCE

insert( )
* The insert( ) method inserts one string into another.
* It calls String.valueOf( ).

* This string is then inserted into the invoking StringBuffer
object.

StringBuffer insert(int index, String str)

StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)

147

class insertDemo {

public static void main(String args[]) {
StringBuffer sb = new StringBuffer("I Java!");
sb.insert(2, "like "):

System.out.println(sb);

i

i
ouTPUT

I like Java!

148




Prepared by Sharika T R, SNGCE

reverse( )

* We can reverse the characters within a StringBuffer object
usine reverse( ):

StringBuffer reverse( )

class ReverseDemo |
public static void main(String args[]) {

StringBuffer s = new StringBuffer("abcdef™);
System.out.println(s);
s.reverse();

System.out.println(s);

}

}
OUTPUT

abcdef

149
fedcba

delete( ) and deleteCharAt( )

* We can delete characters within a StringBuffer by using the

methods delete( ) and deleteCharAt( )

StringBuffer delete(int startIndex, int endIndex)

StringBuffer deleteCharAt(int loc)

* delete() deletes from startindex to endIndex—1.

* The deleteCharAt( ) method deletes the character at the index

specified by loc

150




Prepared by Sharika T R, SNGCE

class deleteDemo |

public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This 1s a test."):
sb.delete(4, 7):

System.out.println(" After delete: " + sb):
sb.deleteCharAt(0):

System.out.println(" After deleteCharAt: " + sb);
)

)

The following output is produced:

After delete: This a test.

After deleteCharAt: his a test.
151

replace( )

* We can replace one set of characters with another set inside a
StringBuffer object by calling replace( ).

StringBuffer replace(int startindex, int endindex, String str)

— The substring at startIndex through endlIndex—1 is replaced.

class replaceDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("This is a test.");
sb.replace(5, 7, "was");

System.out.println(" After replace: " + sb);

}

}
OUTPUT
After replace: This was a test -

152




Prepared by Sharika T R, SNGCE

substring( )

* We can obtain a portion of a StringBuffer by calling
substring( ).

String substring(int startIndex)

String substring(int startIndex, int endIndex)

+ The first form returns the substring that starts at startindex and
runs to the end of the invoking StringBuffer object.

* The second form returns the substring that starts at srartindex
and runs through endIndex—1.

153

*Input/Output —
*|/O Basics, Reading Console Input, Writing Console Output,
PrintWriter Class, Object Streams and Serialization, Reading and
Writing Files.

«Java Library
*String Handling — String Constructors, String Length, Special
String Operations Character Extraction, String Comparison,
Searching Strings, Modifying Strings, Using valueOf(),
Comparison of StringBuffer and String.

*Collections framework

*Collections overview, Collections Class — ArrayList. Accessing
Collections via an lterator. 154




Prepared by Sharika T R, SNGCE

Collections Framework

» The|java.util package|contains one of Java’s most powerful
subsystems: The Collections Framework.

* The Collections Framework is a sophisticated hierarchy of
interfaces and classes that provide state-of-the-art

technology(best possible technlogy) for managing groups of
objects.

— The Collection in Java is a framework that provides an
architecture to store and manipulate the group of objects.

— Java Collection framework provides many interfaces (Set,
List, Queue, Deque) and classes (ArrayList, Vector, LinkedList,
PriorityQueue, HashSet, LinkedHashSet, TreeSet)

155

«interface» «winterfacen
Collection Map
l‘\ B
...... Y TR ATV
| i :
1 .
«winterfacen «interfacen «interfacen
List Queue Set RGNy heai
4 4 s
____________ P O o T e S RO PO CE E [ T)
1 [} LI [} 1 [}
' ' | ] . 1
ArrayList Stack LinkedList PriorityQueue HashSet TreeSet

Figure 1 Interfaces and Classes in the Java Collections Framework

156




Prepared by Sharika T R, SNGCE

Collections Overview

» The Java Collections Framework standardizes the way in
which groups of objects are handled by our programs.

» The entire Collections Framework is built upon a set of
standard interfaces.

* Mechanisms were added that allow the integration of
standard arrays into the Collections Framework.

157

» The Collections Framework was designed to meet several
goals.
— First, the framework had to be high-performance.

» The implementations for the fundamental collections
(dynamic arrays, linked lists, trees, and hash tables) are
highly efficient.

— Second, the framework had to allow different types of

collections to work in a similar manner and with a high degree
of interoperability.

— Third, extending and/or adapting a collection had to be easy.
158




Prepared by Sharika T R, SNGCE

 Algorithms are an important part of the collection

mechanism.

— Algorithms operate on collections and are defined as static
methods within the Collections class.

The algorithms provide a standard means of manipulating

collections.

Java Collections Framework provides algorithm
implementations that are commonly used such as sorting,
searching etc.

— void sort(List list)

— int binarySearch(List list, Object value)

159

Another item closely associated with the Collections

Framework is the lterator interface.

An iterator offers a general-purpose, standardized way of

accessing the elements within a collection, one at a time.

— An iterator provides a means of enumerating the contents of a
collection.

Because each collection implements lterator, the

elements of any collection class can be accessed through

the methods defined by Iterator

160




Prepared by Sharika T R, SNGCE

» The framework defines several map interfaces and
classes.
— Maps store key/value pairs.

« A map cannot contain duplicate keys.

 Although maps are part of the Collections Framework,
they are not “collections” in the strict use of the term

161

Recent Changes to Collections

 Collections Framework underwent a fundamental change
that significantly increased its power and streamlined its
use.
—The changes were caused by the addition of
* generics
« autoboxing/unboxing, and
« for-each style for loop.

162




Prepared by Sharika T R, SNGCE

» Generics add the one feature : type safety.

— With generics, it is possible to explicitly state the tvpe of data

being stored, and run-time type mismatch errors can be avoided.

» Autoboxing/unboxing facilitates the storing of primitive
types in collections.
« IN THE PAST., if we wanted fo store a primitive value, such

as an int, in a collection, we had to manually box it into its
type wrapper.

* When the value was retrieved, it needed to be manually
unboxed (by using an explicit cast) into its proper primitive
type.

— Because of autoboxing/unboxing, Java can automatically
perform the proper boxing and unboxing needed when storing or
retrieving primitive types.

163

The Collection Framework

* T'he Collections Framework defines several interfaces.

Interface Description

Collection Enables you to work with groups of objects; it is at the top of the collections
hierarchy.

Deque Extends Queue to handle a double-ended queue. (Added by Java SE 6.)

List Extends Collection L0 handle sequences (lists of objects).

NavigableSet Extends SortedSet to handle retrieval of elements based on closest-match

searches. (Added by Java SE 6.)

Queue Extends Collection to handle special types of lists in which elements are
removed only from the head.

Set Extends Collection to handle sets, which must contain unique elements.

SortedSet Extends Set to handle sorted sets.

164




Prepared by Sharika T R, SNGCE

The Collection Classes

» The collection classes implement collection interfaces.

« Some of the collection classes provide full
implementations that can be used as-is.

« Some of the collection classes are abstract, providing

skeletal i

mplementations that are used as starting

points for creating concrete collections.

165

The standard collection classes are

Class | Description

AbstractCollection ‘Ileements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of the List interface.

AbstractQueue 'Extends AbstractCollection and implements parts of the Queue interface.

AbstractSequentiallist | Extends AbstractlList for use by a collection that uses sequential rather than random
access of its elements.

LinkedList | Implements a linked list by extending AbstractSequentialLlist.

Arrayl ict Implements a dynamic array by extending Ahetractiict

ArrayDeque Implements a dynamic double-ended queue by extending AbstractCollection and
implementing the Deque interface. (Added by Java SE 6.)

AbstractSet Extends AbstractCollection and implements most of the Set interface.

EnumSet | Extends AbstractSet for use with enum elements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet .Extends HashSet to allow insertion-order iterations.

PriorityQueue Extends AbstractQueue to support a priority-based queue.

TreeSet " | Implements a set stored in a tree. Extends AbstractSet.

166




Prepared by Sharika T R, SNGCE

ArrayList Class

* The ArrayList class extends AbstractList and implements

the List interface.

* ArrayList is a generic class that has declaration:

class ArrayList<E>

— Here, E specities the type of objects that the list will hold.

* ArrayList supports dynamic arrays that can grow as needed.

— This 1s needed because in some cases we may not know

how large an array we need precisely until run time.
167

* An ArrayList is a variable-length array of object references.
— So ArrayList can dynamically increase or decrease in size.
» Array lists are created with an initial size.

— When this size is exceeded. the collection is automatically

enlarged.

— When objects are removed, the array can be shrunk.

168




Prepared by Sharika T R, SNGCE

* ArrayList has following constructors:
ArrayList( )

# This constructor builds an empty array list.
ArrayList(Collection<? extends E> ¢)

— This constructor builds an array list that is initialized with
the elements of the collection c.
ArrayList(int capacity)
— This constructor builds an array list that has the specified initial
capacity.
— The capacity is the size of the underlying array that is used to
store the elements.

— The capacity grows automatically as elements are added to an
nnnnn Toms

169

import java.util. ®;

class ArrayListDemo {

public static void main(String args|[]) {
ArrayList<String> al = new ArrayList<String>();

System.out.println("Initial size=" +al.size()); ;
System.out.println("Contents : " + al);

al.add("C");
al.remove("F");
al.add("A");
al.remove(2):
al.add("E"): : ; 5
System.out.println("Size=" +al.size());
al.add("B"): ;
System.out.printIn("Contents=" +al);
al.add("D"); |
al.add("F");
al.add(1, "A2"); } —
System.out.println("Size now=" +al.size()); g:g':lnilii?o
Contents : [C, A2, A, E, B, D, F]
Size=b
Contents=[C, A2, E, B, D]

170




Prepared by Sharika T R, SNGCE

* The contents of a collection are displayed using the default
conversion provided by toString( ), which was inherited from

AbstractCollection.

* We can increase the capacity of an ArrayList object manually

by calling ensureCapacity( ).

void ensureCapacity(int cap)

« If we want to reduce the size of the array that ofArrayL ist

object so that it is precisely as large as the number of items

that it is currently holding, call trimToSize( ):

void trimToSize( )

171

Accessing Collections via an lterator

* To cycle through the elements in a collection (e.g.
display each element, sum of elements etc.), We can use

iterator, which is an object that implements either
— Iterator or

— ListlIterator

172




Prepared by Sharika T R, SNGCE

« Iterator and Listlterator are generic interfaces which are

declared as :

interface Iterator<E>

interface Listlterator<E>

— Here, E specifies the type of objects being iterated

173

 Iterator enables you to
— cycle through a collection
— obtaining or removing elements.
» Listlterator extends Iterator to allow

— bidirectional traversal of a list,

— the modification of elements

174




Prepared by Sharika T R, SNGCE

boolean hasNext( )

The Methodq Defined . Retums_ true if there are more elements.
by Iterator

Otherwise, returns false.

E next( ) void remove( )

* Returns the next element. * Removes the current element.
* Throws NoSuchElementException | * Throws lllegalState Exception if an
if there is not a next element. attempt is made to call remove( ) that is not
preceded by a call to next( ).

175

d Defined by Listlterator
* Inserts obj into the list in front of the element that
void add( - Obj) will be returned by the next call to next( ).
boolean hasNext( ) . iemmsf‘t;l'sl::e if there is a next element. Otherwise,

boolean hasPrevious( ) [ g;“;?w“ig“feﬂ:?al‘:: PEETRNE Slemient

E t( ) * Returns the next element. NoSuchElementException is
nex thrown if there is not a next element.
- » Returns the index of the next element. If there is
int nex“ndex( ) not a next element, returns the size of the list.
- * Returns the previous element.
E previo US( ) NoSuchElementException is thrown if there is not a
previous element.
: : * Returns the index of the previous element. If there
Int prewousmdex( ) is not a previous element, returns —1.
* Removes the current element from the list. An
void remove( ) HllegalState Exception is thrown if removef ) is called
before next( ) or previous( ) is invoked.
. . * Assigns ohj to the current element. This is the element
void SEt{ E Obj) last returned by a call to either next( ) or previous( ). 176




Prepared by Sharika T R, SNGCE

Exceptions in methods

Exceptions in the Methods Defined by Iterator

— NoSuchElementException

— lllegalState Exception

Exceptions in the Methods Defined by ListIterator
— NoSuchElementException

— IllegalState Exception

— UnsupportedOperationException

177

Using an Ilterator

Each of the collection classes provides an iterator( ) method
that returns an iterator to the start of the collection.

— By using this iterator object, we can access each element in
the collection, one element at a time.

To use an iterator to cycle through the contents of a collection,

— 1. Obtain an iterator to the start of the collection by calling the

collection’s iterator( ) method.
— 2. Setup a loop that makes a call to hasNext( ).

« Have the loop iterate as long as hasNext( ) returns true.

3. Within the loop, obtain each element by calling next( ).
178




Prepared by Sharika T R, SNGCE

import java.util. *; (
-
class IteratorDemo { — - lava

public static void main(String args[]) { ListIterator<String> litr = al.listIterator();

ArrayList<String> al = new ArrayList<String>(); while(litr.hasNext())

al.add("C"); { String element = litr.next();

al.add("A"); litr.set(element +"+"); ]

al.add("E"); System.out.print("Modified contents of al: ");
al.add("B"): itr = al.iterator();

al.add("D"): while(itr.hasNext()) {

al.add("F");

String element = itr.next();
System.out.print(" Original contents of al: ")z
Iterator<String> itr = al.iterator():

System.out.print(element + " "); }
System.out.println();
while(itr.hasNext()) System.out.print("Modified list backwards: ");

{ while(litr.hasPrevious()) {

String element = itr.next(): String clement = litr.previous():

System.out.print(clement + " ); System.out.print(element + " ");

1 } System.out.println(); } }
System.out.println();

Original contents of al: CAEBDF
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ A+ C+ 179

END OF MODULL 4

180




