* More features of Java :
M Exception Handling:
* Checked Exceptions

* Unchecked Exceptions

* try Block and catch Clause

Exception Handling > Java

* An exception is an abnormal condition that occur in a code
sequence at run time.
— Exception is a RUN TIME ERROR

* A Java exception is an object that describes an exceptional
(that 1s, error) condition that occurred in a piece of code.

* When an exceptional condition arises,

— an object representing that exception is created and

— It is thrown in the method that caused the error.

* That method may choose to handle the exception itself,
or pass 1t on.

* The exception is then caught and processed

Exception Handling(contd.) <%, lava

* Exceptions can be generated by

— the Java run-time system, or

— they can be manually generated by your code.

* Exceptions thrown by Java are related to
— Fundamental errors that violate the rules of

* the Java language or

* the constraints of the Java execution environment.

Exception Types

All exception types are subclasses of the built-in LZ lavaﬂ
class Throwable.

Throwable has two subclasses that partition —
exceptions into two distinct branches. it i
d One branch is headed by Exception. Enception | =

« This class 1s used for exceptional conditions
that user programs should catch. Subclass of ,
this helps to create custom exception types. L hon

 RuntimeException is a subclass of
Exception.

U The other branch is headed by Error
 This defines exceptions that are not expected to be caught
under normal circumstances by our program.(unchecked)

* Exceptions of type Error are used by the Java run-time
system to indicate errors.

E.g. Stack overtlow,Out of Memory error

EXCEPTION

CHECKED EXCEPTIONS

= Java

UNCHECKED EXCEPTIONS

Unchecked exception

= »
* Unchecked exception classes are defined inside = Iava

java.lang package.

— The unchecked exceptions are subclasses of
the standard type RuntimeException.

— In the Java language, these are called

unchecked exceptions because the compiler

does not check to see whether there is a method

that _handles or throws these exceptions.

— If the program has unchecked exception then it
will compile without error but exception occurs
when program runs.

*E.g Exceptions under Error, ArrayIndexOutOfBoundException

Unchecked exception(contd.)

Exception

Meaning

ArithmeticException

Arithmetic error, such as divide-by-zero.

ArraylndexOutOfBoundsException

Array index is out-of-bounds.

ArrayStorebException

Assignment 1o an array element of an incompatible type.

ClassCastbException

Invalid cast.

EnumConstantNotPresentException

An attempt is made to use an undefined enumeration value.

lllegalArgumentException lllegal argument used fo invoke a method.

lllegalMonitorStateException lllegal monitor operation, such as waiting on an unlocked
thread.

llegalStatebxception Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread
state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

MNegativeArraySizeException

|Array created with a negative size.

NullPointerException

Invalid use of a null reference.

MumberFormatException Invalid conversion of a string to a numeric format.
SecurityException Attempt to violate security.
StringlndexOutOfBounds Attempt to index outside the bounds of a stnng.
TypeNotPresentException Type not found.

UnsupportedOperationException

An unsupported operation was encountered.

G

Checked excegtlon > lava

* There are some exceptions that are defined by java. l&ngfft
must be included in_a method’s throws list, 1if a method
generates such exceptions and that method does not handle it
itself. These are called checked exceptions

Exception Meaning

ClassMNotFoundException Class not found.

CloneNotSupportedException | Attempt to clone an object that does not implement the Cloneable
interface.

lllegalAccessException uﬁ.::::eas to a class is denied.

InstantiationException |Attempt to create an ohject of an abstract class or interface.

!nterrupEEdExceptiﬂn One thread has been interrupted by another thread.

HnSuchHeldExcéptiﬂn :A requested field does not exist.

NoSuchMethodException iA requested method does not exist.

 IOException
* FileNotFoundException
* SQLException

Checked exception(contd.) <, lava

* Checked exceptions are the exceptions (in java.lang) that

are checked at compile time.

— If some statement in a method throws a checked

exception, then that method must

* either handle the exception or

* it must specify the exception using tirows keyword.

Checked exceptions

Checked at compile
time.(COMPILE TIME
EXCEPTIONS)

Not sub class of
RunTimeException

The method must either
handle the exception or it
must specify the exception
using throws keyword.

Shows compile error if

checked exception 1s not
handled.

E. g. ClassNotFoundException,
[OException

= Javar

Unchecked exceptions
NOT checked at compile

time.(RUN TIME
EXCEPTINS)

Sub class of
RunTimeException

It 1s NOT needed to handle
or catch these exceptions

DO NOT Show compile
error 1f exception 1s not
handled. But shows run-
time error.

Eg. ArithmeticException,
ArraylndexOutOfBoundsException

Exception handling fundamentals ;__E.) lava

Java exception
handling is

managed via
FIVE
keywords:

12

Exception handling fundamentals(contd.) = Java

* Program statements that we want to check for exceptions are
written within a try block.

— If an exception occurs within the try block, it is thrown.

— The code inside catch can catch this exception and handle
it in some manner.

» System-generated exceptions are automatically thrown by the
Java run-time system.

 To manually throw an exception, use the keyword throw.

* Any exception that 1s thrown out of a method must be
specified as such by a throws clause.

* Any code that absolutely must be executed after a try block
completes is put in a finally block.

p— "
try { = l davd
// block of code to monitor for errors

}
catch (ExceptionTypel exOb)

{
// exception handler for ExceptionTypel

}
catch (ExceptionType2 exOb)

{
// exception handler for ExceptionType2

1
/...

finally

{
// block of code to be executed after try block ends

}

Here, ExceptionType is the type of exception that has occurred. H

Uncaught Exceptions = |ava
=
* Consider the program
Lineno. 1 class Ex{
Lineno.2 public static void main(String args[])
Lineno.3 { mtd =0;
Lineno.4 inta=42/d;
Lineno.5 }
Lineno.6 }

* This small program causes a divide-by-zero error((42/0)

e Java run time system constructs a new exception object and
then throws this exception.

» Th erogram stops by showing the following exception(run time
erroe)

* java.lang.ArithmeticException: / by zero at Ex.main(Ex.java:4)

15

= Java

java.lang.ArithmeticException: / by zero at
Ex.main(Ex.java:4)

Here Ex i1s the class name , main i1s the method name,;
Ex.java 1s the file name; and the exception is inline number 4.

These details are all included in the simple stack trace.

The type of exception thrown is a subclass of Exception called
ArithmeticException (describes what type of error
happened.)

16

File Edit Format View Help

class Excl{
public static void main(String args[])
int d = 0;
int a = 42 / d;

e ————)
"] Excl - Notepad - - = "‘:_‘:_;:'j lava

BER CiWindows\system32iemd exe

Microsoft Windows [U;Psiun bh.1.7688]
Copyright <c> 20809 Microsoft Corporation. All rights reserved.

C:sUzers~USER>d:

D:~>cd RENETHAJB-~O0OFP

D :~REMETHAJB~00P>javac Excl.java

D :~RENETHAJE~0OP>java Excl

Exception in thread "main" java.lang.ArithmeticException: ~ by zero

at Excl.main<Excl.javaz4>

ID:\RENETHHJB\OUP}

r - B — e

= Java

Lineno. 1 class Excl {

Lineno.2 static void subroutine()

Lineno.3 { intd =0;

Lineno.4 mta=10/d;

Lineno.5 }

Lineno.6 public static void main(String args[])
Lineno.7 { Excl.subroutine();

Lineno.8 }

Lineno.9 }

* java.lang.ArithmeticException: / by zero
at Excl.subroutine(Excl.java:4)

at Excl.main(Excl.java:7)

18

try Block and catch Clause <., lava

* Benefits of exception handling
— First, 1t allows us to fix the error.

— Second, it prevents the program from automatically

terminating.

* To guard against and handle a run-time error, simply

enclose the code that we want to monitor inside a try block.

* Immediately after the try block, there 1s a catch clause that

specifies the exception type that we wish to catch . The catch

block can process that exception..

19

= Java

class Exc2{

public static void main(String args[])

{ try
{
intd=0;
inta=42/d;
1
catch(ArithmeticException ae)
{
System.out.println("Division by Zero not allowed");
}

1

20

= Java

class Exc2{

public static void main(String args[])

{ try
{
intd = 0;
inta=42/d;
}
catch(ArithmeticException ae)
{
System.out.println("Division by Zero not allowed");
}

}

21

File Edit Format WYiew Help

class Exc2{

public static void main(String args[])
{ try

int d
int a

0;
42 / d:

catch(ArithmeticException ae)

system.out.printin("Division by Zero not allowed");

r F

B C\Windows\system32\cmd.exe -
ra— i s

D~ REMETHAJB~00F>javac Exc2.java

Dz~ RENETHAJB~00F>java Exc2
Divizion by Zero not allowed

D = ~RENETHAJB~00P >

22

try-catch block to handle division by zero exception

class Ex { E____,f Iava“
public static void main(String args[]) {
intd, a;
try { // monitor a block of code.
d=0;
a=42/d;
System.out.println("This will not be printed.");
}
catch (ArithmeticException e) // catch divide-by-zero error
{
System.out.println("Division by zero."); OUTPUT
} Division by zero.
After catch statement.

System.out.println("After catch statement.");

J
J

23

Working of the program 2, lava

In this program the System.out.printin("This will not be printed.");

inside the try block 1s never executed because a =42 / d;

Once an exception 1s thrown, program control transfers out of

the try block into the catch block.

* 1.e. catch 1s not “called” but controls goes out to catch when
exception occurs, so execution never ‘returns’ to the try

block from a catch.

* Thus, the line “This will not be printed.” 1s not displayed.

try-catch (contd.) > Java

A try and its catch statement form a unit.

The scope of the catch clause is restricted to those statements
specified by the immediately preceding try statement.

— Each catch block can catch exceptions in statements inside
immediately preceding try block.

A catch statement cannot catch an exception thrown by another
try statement (except in the case of nested try statements).

The statements that are protected by try must be surrounded by
curly braces. (That is, they must be within a block.)

We cannot use try on a single statement

25

try-catch Example
import java.util. Random;

=’ Java

class HandleError {

public static void main(String args[]) {

int a=0, b=0, c=0;

Here b and ¢ are random numbers .
Random r = new Random();

If the value of b or ¢ becomes zero then

for(int 1=0; 1<32000; 1++) { a=12345./ (b/c) becomes
try { a=12345/0;
b = r.nextInt(): (Division by zero(ArithmeticException) will

occur)
This statement is inside try block
So exception will be caught by catch and

¢ = r.nextlnt();
a=12345/ (b/c);

} prints message Division by zero.
catch(ArithmeticException e) and set the value of a to 0 and proceeds
{ NO RUNTIME ERROR!!

System.out.println("Division by zero.");
a=0; // set a to zero and continue

}

System.out.println("a: " + a);

. 26

Displaying a Description of an Exception <35 l va’

* We can display this description in a println() statement by simply
passing the exception as an argument.
class Exc3{
public static void main(String args|[])
{ try
{
mmtd =0;
inta=42/d;
i

catch(ArithmeticException ae)

{

System.out.println("The exception occurred 1s "+ae);

}

File Edit Format View Help ,Ea"

class Exc3{
Eub11c static void main(String args[])
try

int d
int a

0;
42 / d: \
catch(ArithmeticException ae)

system.out.printin("The exception occurred is "+ae); I

(1 vioerocrse S =i

D : ~REMETHAJB~00P>javac Exc3.java

D :~RENETHAJBSOOP> java Exc3 -
The exception occured is Java.lang.ArithmeticException: ~ by zero |

D :~\RENETHAJB~00P>

28

* More features of Java :
M Exception Handling:
* Multiple catch Clauses

* Nested try Statements

Multiple catch Clauses = Java

 There can be more than one exception in a single piece of

code.

— To handle this type of situation, we can specify two or more

catch clauses, each catching a different type of exception.

* When an exception is thrown,

— each catch statement is inspected in order, and

— the first one whose type matches that of the exception is executed.

 After one catch statement executes, the other catch statements
are bypassed(ignored), and execution continues after the

try/catch block.

Multi catch-Example

class' Mult%catcl'l { | | E IaV J
public static void main(String args[]) { =
try {
int a = args.length; //mumber of commandline arguments
System.out.println("a =" + a);
mmtb =42/ a; //when a is O this will raiseAthmeticException

intc[]={1};
C[42] = 99, //size of array 1S 1. So c[42] leds to ArrayIndexOutOfBoundsException

} Here the value of a is set as the number of
command line arguments. If no command
catch(ArithmeticException e) line arguments are there during execution
E.g. java MultiCatch
{ Here ais 0
System.out.println("Divide by 0: " + e); sointb =42/ a; will cause
y : p y U ’ ArithmeticException. and is caught by
} catch(ArithmeticException e).
CatCh(AITaYIIldCXOUtOfB OundsExceptlon e) If command line arguments are there ,then a
{ is not zero. E.g. java MultiCatch ok
(Here a=1. So no exception occurs in int b
System.out.println("Array index oob: " + e); =42/a)
Size of array c isl (only one element).
} So c[42] = 99; will cause

ArrayIndexOutofBoundsException

SyStemDUt-Pr intln("After try/ CatCh blOCkS° "); occurs(because position 42 is not there in
} this array)

) 4

= Java

* Qutput

BN C\Windows\system32\cmd.exe | =HNC] |i:h‘

D:~REMETHAJB~00P>javac Multicatch.java

D

a
Divide by A: java.lang.ArithmeticException: ~ by zero

After tryscatch blocks.

m

S REMETHAJB00P>java Multicatch

MDD : ~REMETHAJB~00P*>java Multicatch ok

a =1
Array index limit exceeded: java.lang.ArraylndexOutOfBoundsException:

After tryscatch blocks.
D=~ REMETHAJB~00P>

Multi-catch (contd.) = |ava

* When we use multiple catch statements, it 1s important
that exception subclasses must come before any of their

superclasses.

* If we are using catch with superclass exception before the

catch with subclass exception then catch with subclass

exception will be 1gnored.

— Such codes are unreachable. Unreachable code 1s an

ERROR.

= |Java
 E.g. Exception class is the superclass of all other exception classes
like ArithmeticException, FileNotFoundException etc.

try
{

//statements

}
catch(Exception e) //ALL EXCEPTIONS WIL BE CAUGHT HERE

{ //statements

}

catch(ArithmeticException ae) //This catch 1s never used for catching

{//statements

}

Any exception that occurs in try block will be caught by the first suitable
catch. Here all exceptions will match with Exception object. So even
though ArithmeticExcepton occurs inside try block, it will be caught by
catch(Exception e) block. So catch(ArithmeticException ae) will never
catch it. 7

Multi catch(ERROR) // superclassexception should not be caught before catching subclass

class SuperSubCatch {

public static void main(String args[])

}

{

try {

int a =0;

Imtb =42/ a;

}

catch(Exception ¢) //All exceptions are caught here
{System.out.println("Generic Exception catch.");

}

/* The next catch is never reached because
ArithmeticException is a subclass of Exception. */
catch(ArithmeticException e)

{ //ERROR - unreachable

System.out.println(* Arithmetic Exception occurred ");

}
}

=’ Java

COMPILE ERROR- the second catch statement is unreachable because the
exception has already been caught by Exception

8

A subclass must come before its superclass in a series of catch statements.

| =) "
C ass. Supe.rSub?atch.{ | = Iava
public static void main(String args[])

{
try {
int a =0;
Imtb =42/ a;
}

catch(ArithmeticException e)

{

System.out.println(" Arithmetic Exception occurred ");
}
catch(Exception ¢)

{System.out.println("Generic Exception catch.");

}

This is the correct wusage of catch. The catch with subclass
exception(AritnmeticException) should appear before catch with super class

exception(Exception) 5

Nested #ry Statements = |ava

e The try statement can be nested.
— A try statement can be inside the block of another try.

* Each time a try statement is entered, the context of that
exception 1s pushed on the stack.

— If an inner try statement does not have a catch handler for a
particular exception, the stack i1s unwound and the next try
statement’s catch handlers are inspected for a match.

— This continues until one of the catch statements succeeds, or
until all of the nested try statements are exhausted.

— If no catch statement matches, then the Java run-time system
will handle the exception.

class NestTry {) l av a
public static void main(String args[]) { —

try { C:\>java NestTry
y ‘ Divide by 0: java.lang.ArithmeticException: / by zero
int a = args.length; C:\>java NestTry One
imtb =42/ a; a=1
System.out.println("a =" + a); Divide by 0: java.lang.ArithmeticException: / by zero
C:\>java NestTry One Two
try { Q=2
if(a==1) a = a/(a-a); // division by zero Array index out-of-bounds:
if(a==2) java.lang.ArrayIndexOutOfBoundsException:42
{intc[]={1}
c[42] =99; // generate an out-of-bounds exception
J When we execute the program with no command-

} catch(ArrayIndexOutOfBoundsExceptione) { | line arguments, a divide-by-zero exception is

System.out.println("Array index out-of-bounds: " + €); | generated by the outer try block.

} Execution of the program with one command-line
} argument generates a divide-by-zero exception
from within the nested try block.
Since the inner block does not catch this exception,
it is passed on to the outer try block, where it is

catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

) handled.
} If you execute the program with two command-line
) arguments, an array boundary exception is

generated from within the inner try block.

11

Nested try(contd.) = |ava

* We can enclose a call to a method within a try block.

— Inside that method we can have another try statement.

* In this case, the try within the method 1s still nested inside the

outer try block, which calls that method.

class MethNestTry {

static void show(int a) {
try { // nested try block

if(a==1) a = a/(a-a);
if(a==2) {
intc[]={1};
c[42] =99; // generate an out-of-bounds exception
}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}
}

public static void main(String args[]) {
try {

int a = args.length;
imtb =42/ a;

System.out.println("a =" + a);

// division by zero

show(a);// show contains a try — catch . So nested
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}

)
}

=’ Java

Here try in main function act as outer try block.
Inside that try show() function is called . So try
catch inside show() function is inner to the try in
main function.

When we execute the program with no command-
line arguments, a divide-by-zero exception is
generated by the outer try block and is caught by
outer catch clause(matching is there).

Execution of the program with one command-line
argument generates a divide-by-zero exception
from within the try block in show().

Since the inner catch(no matching) block does not
catch this exception, it is passed on to the outer try

block in main function(matching is there) , and it is
handled.

Iry.) .

,ny we execute the program with two command-line
arguments, an array boundary exception is
generated from within the inner try block and is

caught by innercatch inside show

13

Topics = Java

e More features of Java :
M Exception Handling:
e throw

e throws

e finally

throw statement
= Java

* Our program can throw an exception explicitly, using the

throw statement.

* The general form of throw is shown here:

throw Throwablelnstance;

— Throwablelnstance must be an object of type Throwable or a

subclass of Throwable.

— Primitive types, such as int or char, as well as non-Throwable

classes, such as String and Object, cannot be used as exceptions.

throw(contd.)

Two ways to obtain a Throwable object:
using a parameter in a catch clause, or

creating one with the new operator

=’ Java

1) Using a parameter in a catch clause

catch (ArrayIndexCutCfBoundsException ar)

d

throw ar;

Z) Creating one with the new operator

throw new ArrayIndexCutCfBoundsException();

throw statement(contd..) = |ava

 The flow of execution stops immediately after the throw
statement.

— Any statements after throw statement will not be executed.
* When exception 1s thrown using throw statement :-

— the nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception thrown.

 If that catch statement has a matching exception type as
the thrown exception, control is transferred to that
statement.

* If not matching, then the next enclosing try statement is
inspected, and so on.

 If no matching catch is found, then the default exception
handler halts the program and prints the stack trace.

throw Example 1

class ThrowDemo = I "
; = Java
static void show()
{
try
{throw new NullPointerException("demoexception");
} | | Here first throw in show is caught by
catch(NullPointerException e) matching catch is in show function.
{
System.out.println("Caught inside show"); | Next throw has no immediate catch
throw e; <——7/rerthrow the exception So since the exception matches with
} catch in the main function(that calls
} show), the exception is caught by
public static void main(String args that matching catch in main.
{ ;
fry | MrowDemo
show(): Caught inside show
} ’ Recaught in main: java.lang.NullPointerException: demoexception

catch(NullPointerException e)
{ System.out.println("Recaught in main: " + e);

}

throw with matching catch in calling function

= |Java
class ThrowDemo?2
{
static void show()
{

throw new NullPointerException("demoxception");

| \m\
public static void main(String args|]

{ Here no matching catch for throw is in show functior

try So since the exception matches with catch in the
main function(that cal , the exception

{ is cau at matching catch

show();/

} catch(NullPointerException e)

{ System.out.println("Caught in main: " + e);

} OUTPUT
} Caught in main: java.lang.NullPointerException: demoexception

throw with NO matching catch

class ThrowDemo?2

=’ Java

throw new NullPointerException("demoxception");

public static void main(String args[])

Here no matching catch is in show function.

So since the exception does not matches

with catch in the main function(that calls show)
also, the exception is not caught in the program
the default exception handler halts the program
and prints the stack trace

catch(ArithmeticException ¢)
{ System.out.println("Caught in main: " + e);

{

static void show()

{

}

{
try
{
show();
}
}

}

OUTPUT

Exception in thread "main" java.lang.ArithmeticException: demoxception
at ThrowDemo?2.show(ThrowDemo2.java:3)
at ThrowDemo2.main(ThrowDemo?2.java:9) 8

throw(contd.) = Java
 Many of Java’s built-in run-time exceptions have at least two
constructors:

— one with no parameter and

— one that takes a string parameter.

* When constructor with string parameter 1s used, the argument
specifies a string that describes the exception.

— This string is displayed when the object 1s printed using print()
or printin().

— It can also be obtained by a call to getMessage(), which is
defined by Throwable.

throw new NullPointerException("demoxception");

* Here the string demoxception inside the constructor of
NullPointerException 1s the name of the exception.

throws = Java

A throws clause lists the types of exceptions that a

method(function) might throw.

throws keyword is used with the method signature(header)

If a method has an exception and 1t does not handle that

exception, it must specify this using throws , so that callers of

the method can guard themselves against that exception.

throws 1s necessary for all exceptions, except those of type

Error or RuntimeException or any of their subclasses

throws (contd.) =’ Java

e All other exceptions that a method can throw must be
declared in the throws clause.

— If they are not, a compile-time error will result.

e General form of a method declaration that includes a
throws clause:

type method-name(parameter-list) throws exception-list

{
// body of method

11

throw statement but no throws in method-ERROR

pubh.c cla.ss Throx.)stg { ?.'-_—:: Iav J
static void vote(int age) {

if (age < 18) {
throw new IllegalAccessException('' You must be at least 18 years old."'');

} else {
System.out.println(* You can vote!");

1
1

public static void main(String[] args)

{

D:\RENETHAJB\OOP>javac ThrowsEg.java
VOtE(1 5)a ThrowsEg.java:4: unreported exception java.lang.Illegal AccessException; must be
} caught or declared to be thrown
throw new IllegalAccessException("You must be at least 18 years old.");

} A

1 error

COMPILE ERROR
This program tries to throw an exception that it

does not catch.

Because the program does not specify a throws clause to declare this
exception to be thrown, the program will not compile.

Include throws in method and try catch in calling function.

12

Using throws

public class ThrowsEg { E_,-j Iava
static void vote(int age) throws IllegalAccessException {
if (age < 18) {
throw new IllegalA ccessException('' You must be at least 18 years old."'');

} else {
System.out.println(“ You can vote!");
}
}
public static void main(String[] args)
{ OUTPUT
try{ E;éé;fj?;ﬁ:.r?ggg?%gng.IllegalAccessException: You must be at least 18 vyears old.
vote(15);
}
catch(Exception e)
{
System.out.println("Exception: "+e);
}
} 13

DEEPU
Stamp

import java.io.*; <) .
class Sample{ — Iava
void show() throws IOException {

throw new IOException(‘“Thrown IO error");

1
1

public class Testthrows {

public static void main(String args[]){

try{

Output
Sample s=new Sample(); Exception handledjava.io.IOException: Thrown IO error
S'ShOW(); Normal program flow
1

catch(Exception e){System.out.printin("Exception handled. "+e);}

System.out.println("Normal program flow");

1
1

14

finally

dVd
* finally creates a block of code that will be executec'ﬁﬁ'te]r

try/catch block has completed and before the control goes out
from the try/catch block.

try {

// block of code to monitor for errors

}
catch (ExceptionTypel exODb)

{

// exception handler for ExceptionTypel

J

catch (ExceptionType2 exODb)
{ // exception handler for ExceptionType2

1
/...

finally
{ /] block of code to be executed after try block ends

! s

Why finally is needed? = Java’

* When exceptions are thrown, execution in a method takes a
nonlinear path and changes the normal flow through the
method.

— Sometime exception causes the method to return
prematurely.

— This may cause problems in some cases.

— E.g a method opens a file upon entry and closes it upon exit, then
we will not want the code that closes the file to be bypassed by
the exception-handling mechanism.

* In such situations the code for closing that file and other
codes that should not be bypassed should be written inside
finally block

* This will ensure that necessary codes are not skipped because
of exception handling.

finally(contd.) =’ Java

e The finally block will execute whether or not an
exception 1s thrown.

— If an exception is thrown, the finally block will execute

even if no catch statement matches the exception.

— Any time a method is about to return to the caller from inside a
try/catch block, (via an uncaught exception or an explicit return

statement). the finally clause is also executed just before the

method returns.

» [fafinally block is associated with a try, the finally block
will be executed upon conclusion of the try.

finally(contd.)

=’ Java

* The finally clause is optional. However, each try
statement requires at least one catch or a finally clause

try
{

//monitor exception

}
finally

{
}

try
{

//monitor exception

}
catch(ExceptionType1 ob)

{
}

try
{

//monitor exception

}
catch(ExceptionType1 ob)
{
}
catch(ExceptionType2 ob)
{

}
/

finally

{
}

18

finally example

class FinallyTry

{

public static void main(String[] args)

{

System.out.println("After try - catch -finally");

}

=’ Java

try

{

int a=5/0;
}

OUTPUT

Exception is java.lang.ArithmeticException: / by zero
Inside finally
After try - catch -finally

catch(ArithmeticException ae)

{

System.out.println("Exception is "+ae);

}
finally

{
System.out.println("Inside finally");

}

Here int a=5/0; inside try causes ArithmeticException
And it is caught by catch(ArithmeticException ae)
And prints the message

Exception is details about exception

Then it enters finally block and prints Inside finally
Then it comes out from try catch finally block

and prints the message

After try - catch -finally

19

finally example

class FinallyTry

{

public static void main(String[] args)

{

System.out.println("After try - catch -finally");

}

=’ Java

try

{
int a=5/2;

OUTPUT
Inside finally
After try - catch -finally

}

catch(ArithmeticException ae)

{

System.out.println("Exception is "+ae);

}
finally

{
System.out.println("Inside finally");

}

Here int a=5/2; inside try does not cause exception

(So it is not caught by catch(ArithmeticException ae)
)
Then it enters finally block and prints Inside finally
Then it comes out from try catch finally block

and prints the message

After try - catch -finally

20

finally Example

) I
class Samp]e{ class Flnallyl e ava
void show(int n) {
{ 1‘“ c=10; public static void main(String[] args)
ry
({
System.out.println("inside try"); Sample ob=new Sample();
c=10/n; ob.show(1);
} ob.show(0);
catch(Exception e)
{ b Cege o "
System.out.println("Exception caught"+e); System.out.println(“Finished");
} }
}
finally
{
System.out.println("Finally done"); —
) inside try
) Finally done
inside try
Exception caughtjava.lang. ArithmeticException: / by zero
| Finally done
Finished

) 8]
H

class FinallyDemo {
static void procA() {

try {
System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {
System.out.println("procA's finally");

}
J
static void procB() {
try {
System.out.println("inside procB");
return;
} finally {
System.out.println("procB's finally");

}

// Execute a try block normally.

static void procC() {

try {
System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}
}
public static void main(String args[]) {
try {
procA();
} catch (Exception e) {
System.out.println("Exception caught");

}

< Java

procB();

procC(); inside procA

) procA’s finally

} Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

= Java

23

