
Topics

• More features of Java :

Exception Handling:

• Checked Exceptions

• Unchecked Exceptions

• try Block and catch Clause

2Prepared by Renetha J.B.

Exception Handling

• An exception is an abnormal condition that occur in a code

sequence at run time.

– Exception is a RUN TIME ERROR

• A Java exception is an object that describes an exceptional

(that is, error) condition that occurred in a piece of code.

• When an exceptional condition arises,• When an exceptional condition arises,

– an object representing that exception is created and

– It is thrown in the method that caused the error.

• That method may choose to handle the exception itself,

or pass it on.

• The exception is then caught and processed

Prepared by Renetha J.B. 3

Exception Handling(contd.)

• Exceptions can be generated by

– the Java run-time system, or

– they can be manually generated by your code.

• Exceptions thrown by Java are related to

– Fundamental errors that violate the rules of

• the Java language or

• the constraints of the Java execution environment.

Prepared by Renetha J.B.
4

Exception Types

• All exception types are subclasses of the built-in

class Throwable.

• Throwable has two subclasses that partition

exceptions into two distinct branches.

� One branch is headed by Exception.

• This class is used for exceptional conditions

that user programs should catch. Subclass of

this helps to create custom exception types.this helps to create custom exception types.

• RuntimeException is a subclass of

Exception.

Prepared by Renetha J.B.

5

� The other branch is headed by Error

• This defines exceptions that are not expected to be caught

under normal circumstances by our program.(unchecked)

• Exceptions of type Error are used by the Java run-time

system to indicate errors.

E.g. Stack overflow,Out of Memory error

EXCEPTION

CHECKED EXCEPTIONS UNCHECKED EXCEPTIONS

Prepared by Renetha J.B. 6

CHECKED EXCEPTIONS UNCHECKED EXCEPTIONS

Unchecked exception
• Unchecked exception classes are defined inside

java.lang package.

– The unchecked exceptions are subclasses of

the standard type RuntimeException.

– In the Java language, these are called

unchecked exceptions because the compilerunchecked exceptions because the compiler

does not check to see whether there is a method

that handles or throws these exceptions.

– If the program has unchecked exception then it

will compile without error but exception occurs

when program runs.

Prepared by Renetha J.B.

7•E.g Exceptions under Error , ArrayIndexOutOfBoundException

Unchecked exception(contd.)
• The unchecked exceptions defined in java.lang are

Prepared by Renetha J.B.

8

Checked exception
• There are some exceptions that are defined by java.lang that

must be included in a method’s throws list, if a method

generates such exceptions and that method does not handle it

itself. These are called checked exceptions

• IOException

• FileNotFoundException

• SQLException
Prepared by Renetha J.B. 9

Checked exception(contd.)

• Checked exceptions are the exceptions (in java.lang) that

are checked at compile time.

– If some statement in a method throws a checked

exception, then that method mustexception, then that method must

• either handle the exception or

• it must specify the exception using throws keyword.

Prepared by Renetha J.B. 10

Checked exceptions

• Checked at compile

time.(COMPILE TIME

EXCEPTIONS)

• Not sub class of

RunTimeException

• The method must either

Unchecked exceptions

• NOT checked at compile

time.(RUN TIME

EXCEPTINS)

• Sub class of

RunTimeException

• It is NOT needed to handle
handle the exception or it

must specify the exception

using throws keyword.

• Shows compile error if

checked exception is not

handled.

• E.g. ClassNotFoundException,

IOException

• It is NOT needed to handle

or catch these exceptions

• DO NOT Show compile

error if exception is not

handled. But shows run-

time error.

• Eg. ArithmeticException,

ArrayIndexOutOfBoundsException

Prepared by Renetha J.B.
11

Exception handling fundamentals

Java exception

try

catchfinally
Java exception

handling is

managed via

FIVE

keywords:

catch

throwthrows

finally

Prepared by Renetha J.B. 12

Exception handling fundamentals(contd.)

• Program statements that we want to check for exceptions are

written within a try block.

– If an exception occurs within the try block, it is thrown.

– The code inside catch can catch this exception and handle

it in some manner.

• System-generated exceptions are automatically thrown by the• System-generated exceptions are automatically thrown by the

Java run-time system.

• To manually throw an exception, use the keyword throw.

• Any exception that is thrown out of a method must be

specified as such by a throws clause.

• Any code that absolutely must be executed after a try block

completes is put in a finally block.

Prepared by Renetha J.B. 13

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)catch (ExceptionType2 exOb)

{

// exception handler for ExceptionType2

}

// ...

finally

{

// block of code to be executed after try block ends

}

Here, ExceptionType is the type of exception that has occurred.

Prepared by Renetha J.B.

14

Uncaught Exceptions

• Consider the program

Lineno.1 class Ex{

Lineno.2 public static void main(String args[])

Lineno.3 { int d = 0;

Lineno.4 int a = 42 / d;

Lineno.5 }

Lineno.6 }

• This small program causes a divide-by-zero error((42/0)

• Java run time system constructs a new exception object and

then throws this exception.

• Th erogram stops by showing the following exception(run time

erroe)

• java.lang.ArithmeticException: / by zero at Ex.main(Ex.java:4)
Prepared by Renetha J.B.

15

• java.lang.ArithmeticException: / by zero at

Ex.main(Ex.java:4)

• Here Ex is the class name , main is the method name,;

Ex.java is the file name; and the exception is inline number 4.

• These details are all included in the simple stack trace.

• The type of exception thrown is a subclass of Exception called

ArithmeticException (describes what type of error

happened.)

Prepared by Renetha J.B. 16

Prepared by Renetha J.B. 17

Lineno.1 class Exc1 {

Lineno.2 static void subroutine()

Lineno.3 { int d = 0;

Lineno.4 int a = 10 / d;

Lineno.5 }

Lineno.6 public static void main(String args[])Lineno.6 public static void main(String args[])

Lineno.7 { Exc1.subroutine();

Lineno.8 }

Lineno.9 }

• java.lang.ArithmeticException: / by zero

at Exc1.subroutine(Exc1.java:4)

at Exc1.main(Exc1.java:7)

Prepared by Renetha J.B. 18

try Block and catch Clause

• Benefits of exception handling

– First, it allows us to fix the error.

– Second, it prevents the program from automatically

terminating.

• To guard against and handle a run-time error, simply

enclose the code that we want to monitor inside a try block.

• Immediately after the try block, there is a catch clause that

specifies the exception type that we wish to catch . The catch

block can process that exception..

Prepared by Renetha J.B.
19

class Exc2{

public static void main(String args[])

{ try

{

int d = 0;

int a = 42 / d;

}

catch(ArithmeticException ae)

{

System.out.println("Division by Zero not allowed");

}

}

}

Prepared by Renetha J.B. 20

class Exc2{

public static void main(String args[])

{ try

{

int d = 0;

int a = 42 / d;

}

catch(ArithmeticException ae)

{

System.out.println("Division by Zero not allowed");

}

}

}

Prepared by Renetha J.B. 21

Prepared by Renetha J.B. 22

try-catch block to handle division by zero exception

class Ex {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}}

catch (ArithmeticException e) // catch divide-by-zero error

{

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}
Prepared by Renetha J.B. 23

OUTPUT

Division by zero.

After catch statement.

Working of the program

• In this program the System.out.println("This will not be printed.");

inside the try block is never executed because a = 42 / d;

• Once an exception is thrown, program control transfers out of• Once an exception is thrown, program control transfers out of

the try block into the catch block.

• i.e. catch is not “called” but controls goes out to catch when

exception occurs, so execution never “returns” to the try

block from a catch.

• Thus, the line “This will not be printed.” is not displayed.
Prepared by Renetha J.B. 24

try-catch (contd.)

• A try and its catch statement form a unit.

• The scope of the catch clause is restricted to those statements

specified by the immediately preceding try statement.

– Each catch block can catch exceptions in statements inside

immediately preceding try block.immediately preceding try block.

• A catch statement cannot catch an exception thrown by another

try statement (except in the case of nested try statements).

• The statements that are protected by try must be surrounded by

curly braces. (That is, they must be within a block.)

• We cannot use try on a single statement

Prepared by Renetha J.B. 25

try-catch Example
import java.util.Random;

class HandleError {

public static void main(String args[]) {

int a=0, b=0, c=0;

Random r = new Random();

for(int i=0; i<32000; i++) {

try {
b = r.nextInt();

c = r.nextInt();

Here b and c are random numbers .

If the value of b or c becomes zero then

a=12345./ (b/c) becomes

a=12345/0;

(Division by zero(ArithmeticException) will

occur)
c = r.nextInt();

a = 12345 / (b/c);

}

catch(ArithmeticException e)

{

System.out.println("Division by zero.");

a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

} } } Prepared by Renetha J.B. 26

occur)

This statement is inside try block

So exception will be caught by catch and

prints message Division by zero.

and set the value of a to 0 and proceeds

NO RUNTIME ERROR!!

Displaying a Description of an Exception

• We can display this description in a println() statement by simply

passing the exception as an argument.

class Exc3{

public static void main(String args[])

{ try

{

int d = 0;

int a = 42 / d;

}

catch(ArithmeticException ae)

{

System.out.println("The exception occurred is "+ae);

}

}

}

Prepared by Renetha J.B. 27

Prepared by Renetha J.B. 28

Topics

• More features of Java :

Exception Handling:

• Multiple catch Clauses

• Nested try Statements

2Prepared by Renetha J.B.

Multiple catch Clauses

• There can be more than one exception in a single piece of

code.

– To handle this type of situation, we can specify two or more

catch clauses, each catching a different type of exception.

• When an exception is thrown,

– each catch statement is inspected in order, and

– the first one whose type matches that of the exception is executed.

• After one catch statement executes, the other catch statements

are bypassed(ignored), and execution continues after the

try/catch block.
Prepared by Renetha J.B.

3

Multi catch-Example
class Multicatch {

public static void main(String args[]) {

try {
int a = args.length; //number of commandline arguments

System.out.println("a = " + a);

int b = 42 / a; //when a is 0 this will raiseAthmeticException

int c[] = { 1 };

c[42] = 99; //size of array is 1. So c[42] leds to ArrayIndexOutOfBoundsException

}
catch(ArithmeticException e)

Here the value of a is set as the number of

command line arguments. If no command

line arguments are there during execution catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

} Prepared by Renetha J.B. 4

line arguments are there during execution

E.g. java MultiCatch

Here a is 0

So int b = 42 / a; will cause

ArithmeticException. and is caught by

catch(ArithmeticException e).

If command line arguments are there ,then a

is not zero. E.g. java MultiCatch ok

(Here a=1. So no exception occurs in int b

= 42 / a)

Size of array c is1 (only one element).

So c[42] = 99; will cause

ArrayIndexOutofBoundsException

occurs(because position 42 is not there in

this array)

• Output

Prepared by Renetha J.B. 5

Multi-catch (contd.)

• When we use multiple catch statements, it is important

that exception subclasses must come before any of their

superclasses.

• If we are using catch with superclass exception before the• If we are using catch with superclass exception before the

catch with subclass exception then catch with subclass

exception will be ignored.

– Such codes are unreachable. Unreachable code is an

ERROR.

Prepared by Renetha J.B. 6

• E.g. Exception class is the superclass of all other exception classes

like ArithmeticException, FileNotFoundException etc.

try

{

//statements

}

catch(Exception e) //ALL EXCEPTIONS WIL BE CAUGHT HERE

{ //statements{ //statements

}

catch(ArithmeticException ae) //This catch is never used for catching

{//statements

}

Any exception that occurs in try block will be caught by the first suitable

catch. Here all exceptions will match with Exception object. So even

though ArithmeticExcepton occurs inside try block, it will be caught by

catch(Exception e) block. So catch(ArithmeticException ae) will never

catch it. Prepared by Renetha J.B. 7

Multi catch(ERROR) // superclassexception should not be caught before catching subclass

class SuperSubCatch {

public static void main(String args[])

{

try {

int a = 0;

int b = 42 / a;

}

catch(Exception e) //All exceptions are caught here

{System.out.println("Generic Exception catch.");

}}

/* The next catch is never reached because

ArithmeticException is a subclass of Exception. */

catch(ArithmeticException e)

{ // ERROR - unreachable

System.out.println(“ Arithmetic Exception occurred ");

}

}

}

COMPILE ERROR- the second catch statement is unreachable because the

exception has already been caught by Exception
Prepared by Renetha J.B.

8

A subclass must come before its superclass in a series of catch statements.

class SuperSubCatch {

public static void main(String args[])

{

try {

int a = 0;

int b = 42 / a;

}

catch(ArithmeticException e)

{

System.out.println(" Arithmetic Exception occurred ");

}

catch(Exception e)

{System.out.println("Generic Exception catch.");

}

}

}

This is the correct usage of catch. The catch with subclass

exception(AritnmeticException) should appear before catch with super class

exception(Exception)
Prepared by Renetha J.B.

9

Nested try Statements

• The try statement can be nested.

– A try statement can be inside the block of another try.

• Each time a try statement is entered, the context of that

exception is pushed on the stack.

– If an inner try statement does not have a catch handler for a– If an inner try statement does not have a catch handler for a

particular exception, the stack is unwound and the next try

statement’s catch handlers are inspected for a match.

– This continues until one of the catch statements succeeds, or

until all of the nested try statements are exhausted.

– If no catch statement matches, then the Java run-time system

will handle the exception.

Prepared by Renetha J.B. 10

class NestTry {

public static void main(String args[]) {

try {

int a = args.length;

int b = 42 / a;

System.out.println("a = " + a);

try {

if(a==1) a = a/(a-a); // division by zero

if(a==2)

{ int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

C:\>java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a = 2

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

}

catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

Prepared by Renetha J.B.
11

When we execute the program with no command-

line arguments, a divide-by-zero exception is

generated by the outer try block.

Execution of the program with one command-line

argument generates a divide-by-zero exception

from within the nested try block.

Since the inner block does not catch this exception,

it is passed on to the outer try block, where it is

handled.

If you execute the program with two command-line

arguments, an array boundary exception is

generated from within the inner try block.

Nested try(contd.)

• We can enclose a call to a method within a try block.

– Inside that method we can have another try statement.

• In this case, the try within the method is still nested inside the

outer try block, which calls that method.outer try block, which calls that method.

Prepared by Renetha J.B. 12

class MethNestTry {

static void show(int a) {

try { // nested try block

if(a==1) a = a/(a-a); // division by zero

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

Here try in main function act as outer try block.

Inside that try show() function is called . So try

catch inside show() function is inner to the try in

main function.

When we execute the program with no command-

line arguments, a divide-by-zero exception is

generated by the outer try block and is caught by

outer catch clause(matching is there).

Execution of the program with one command-line
}

}

public static void main(String args[]) {

try {

int a = args.length;

int b = 42 / a;

System.out.println("a = " + a);

show(a);// show contains a try – catch . So nested try.

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

Prepared by Renetha J.B. 13

argument generates a divide-by-zero exception

from within the try block in show().

Since the inner catch(no matching) block does not

catch this exception, it is passed on to the outer try

block in main function(matching is there) , and it is

handled.

If we execute the program with two command-line

arguments, an array boundary exception is

generated from within the inner try block and is

caught by innercatch inside show

Topics

• More features of Java :

Exception Handling:

• throw

• throws

• finally

2Prepared by Renetha J.B.

throw statement

• Our program can throw an exception explicitly, using the

throw statement.

• The general form of throw is shown here:

throw ThrowableInstance;

– ThrowableInstance must be an object of type Throwable or a

subclass of Throwable.

– Primitive types, such as int or char, as well as non-Throwable

classes, such as String and Object, cannot be used as exceptions.

Prepared by Renetha J.B. 3

throw(contd.)

• Two ways to obtain a Throwable object:

1. using a parameter in a catch clause, or

2. creating one with the new operator

Prepared by Renetha J.B. 4

throw statement(contd..)

• The flow of execution stops immediately after the throw

statement.

– Any statements after throw statement will not be executed.

• When exception is thrown using throw statement :-

– the nearest enclosing try block is inspected to see if it has a

catch statement that matches the type of exception thrown.

• If that catch statement has a matching exception type as

the thrown exception, control is transferred to that

statement.

• If not matching, then the next enclosing try statement is

inspected, and so on.

• If no matching catch is found, then the default exception

handler halts the program and prints the stack trace.

Prepared by Renetha J.B. 5

throw Example 1

class ThrowDemo

{

static void show()

{

try

{throw new NullPointerException("demoexception");

}

catch(NullPointerException e)

{

System.out.println("Caught inside show");

throw e; // rethrow the exception

Here first throw in show is caught by

matching catch is in show function.

Next throw has no immediate catch

So since the exception matches with throw e; // rethrow the exception

}

}

public static void main(String args[])

{

try {

show();

}

catch(NullPointerException e)

{ System.out.println("Recaught in main: " + e);

}

} }
Prepared by Renetha J.B. 6

java ThrowDemo

Caught inside show

Recaught in main: java.lang.NullPointerException: demoexception

So since the exception matches with

catch in the main function(that calls

show), the exception is caught by

that matching catch in main.

throw with matching catch in calling function

class ThrowDemo2

{

static void show()

{

throw new NullPointerException("demoxception");

}

public static void main(String args[])

{ Here no matching catch for throw is in show function

So since the exception matches with catch in the try

{

show();

} catch(NullPointerException e)

{ System.out.println("Caught in main: " + e);

}
}

}

Prepared by Renetha J.B.
7

OUTPUT

Caught in main: java.lang.NullPointerException: demoexception

So since the exception matches with catch in the

main function(that calls show), the exception

is caught by that matching catch

throw with NO matching catch

class ThrowDemo2

{

static void show()

{

throw new NullPointerException("demoxception");

}

public static void main(String args[])

{ Here no matching catch is in show function.

try

{

show();

}

catch(ArithmeticException e)

{ System.out.println("Caught in main: " + e);

}
}

}
Prepared by Renetha J.B.

8

OUTPUT
Exception in thread "main" java.lang.ArithmeticException: demoxception

at ThrowDemo2.show(ThrowDemo2.java:3)

at ThrowDemo2.main(ThrowDemo2.java:9)

Here no matching catch is in show function.

So since the exception does not matches

with catch in the main function(that calls show)

also, the exception is not caught in the program

the default exception handler halts the program

and prints the stack trace

throw(contd.)
• Many of Java’s built-in run-time exceptions have at least two

constructors:

– one with no parameter and

– one that takes a string parameter.

• When constructor with string parameter is used, the argument

specifies a string that describes the exception.

– This string is displayed when the object is printed using print()– This string is displayed when the object is printed using print()

or println().

– It can also be obtained by a call to getMessage(), which is

defined by Throwable.

throw new NullPointerException("demoxception");

• Here the string demoxception inside the constructor of

NullPointerException is the name of the exception.

Prepared by Renetha J.B. 9

throws

• A throws clause lists the types of exceptions that a

method(function) might throw.

• throws keyword is used with the method signature(header)

• If a method has an exception and it does not handle that• If a method has an exception and it does not handle that

exception, it must specify this using throws , so that callers of

the method can guard themselves against that exception.

• throws is necessary for all exceptions, except those of type

Error or RuntimeException or any of their subclasses

Prepared by Renetha J.B. 10

throws (contd.)

• All other exceptions that a method can throw must be

declared in the throws clause.

– If they are not, a compile-time error will result.

• General form of a method declaration that includes a

throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Prepared by Renetha J.B. 11

throw statement but no throws in method-ERROR
public class ThrowsEg {

static void vote(int age) {

if (age < 18) {

throw new IllegalAccessException("You must be at least 18 years old.");

} else {

System.out.println(“ You can vote!");

}

}

public static void main(String[] args)public static void main(String[] args)

{

vote(15);

}

}

Prepared by Renetha J.B.

12

COMPILE ERROR

This program tries to throw an exception that it

does not catch.

Because the program does not specify a throws clause to declare this

exception to be thrown, the program will not compile.

Include throws in method and try catch in calling function.

D:\RENETHAJB\OOP>javac ThrowsEg.java

ThrowsEg.java:4: unreported exception java.lang.IllegalAccessException; must be

caught or declared to be thrown

throw new IllegalAccessException("You must be at least 18 years old.");

^

1 error

Using throws
public class ThrowsEg {

static void vote(int age) throws IllegalAccessException{

if (age < 18) {

throw new IllegalAccessException("You must be at least 18 years old.");

} else {

System.out.println(“ You can vote!");

}

}}

public static void main(String[] args)

{

try{

vote(15);

}

catch(Exception e)

{

System.out.println("Exception: "+e);

}

}

}
Prepared by Renetha J.B. 13

OUTPUT

Exception: java.lang.ArithmeticException: You must be at least 18 years.

DEEPU
Stamp

import java.io.*;

class Sample{

void show() throws IOException{

throw new IOException(“Thrown IO error");

}

}

public class Testthrows{

public static void main(String args[]){

try{try{

Sample s=new Sample();

s.show();

}

catch(Exception e){System.out.println("Exception handled. "+e);}

System.out.println("Normal program flow");

}

}
Prepared by Renetha J.B. 14

Output

Exception handledjava.io.IOException: Thrown IO error

Normal program flow

finally

• finally creates a block of code that will be executed after a

try/catch block has completed and before the control goes out

from the try/catch block.

try {
// block of code to monitor for errors

}

catch (ExceptionType1 exOb)

{{
// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)
{ // exception handler for ExceptionType2

}

// ...

finally

{ // block of code to be executed after try block ends

}
Prepared by Renetha J.B.

15

Why finally is needed?

• When exceptions are thrown, execution in a method takes a

nonlinear path and changes the normal flow through the

method.

– Sometime exception causes the method to return

prematurely.

– This may cause problems in some cases.– This may cause problems in some cases.

– E.g a method opens a file upon entry and closes it upon exit, then

we will not want the code that closes the file to be bypassed by

the exception-handling mechanism.

• In such situations the code for closing that file and other

codes that should not be bypassed should be written inside

finally block

• This will ensure that necessary codes are not skipped because

of exception handling.
Prepared by Renetha J.B.

16

finally(contd.)

• The finally block will execute whether or not an

exception is thrown.

– If an exception is thrown, the finally block will execute

even if no catch statement matches the exception.

– Any time a method is about to return to the caller from inside a

try/catch block, (via an uncaught exception or an explicit return

statement). the finally clause is also executed just before the

method returns.

• If a finally block is associated with a try, the finally block

will be executed upon conclusion of the try.

Prepared by Renetha J.B. 17

finally(contd.)

• The finally clause is optional. However, each try

statement requires at least one catch or a finally clause

try

{

//monitor exception

}

try

{

//monitor exception

}

try

{

//monitor exception

}

catch(ExceptionType1 ob)

Prepared by Renetha J.B. 18

}

finally

{

}

}

catch(ExceptionType1 ob)

{

}

catch(ExceptionType1 ob)

{

}

catch(ExceptionType2 ob)

{

}

//

finally

{

}

finally example
class FinallyTry

{

public static void main(String[] args)

{

try

{

int a=5/0;

}

catch(ArithmeticException ae)

OUTPUT
Exception is java.lang.ArithmeticException: / by zero

Inside finally

After try - catch -finally

{

System.out.println("Exception is "+ae);

}

finally

{

System.out.println("Inside finally");

}

System.out.println("After try - catch -finally");

}

}
Prepared by Renetha J.B.

19

Here int a=5/0; inside try causes ArithmeticException

And it is caught by catch(ArithmeticException ae)

And prints the message

Exception is details about exception

Then it enters finally block and prints Inside finally

Then it comes out from try catch finally block

and prints the message

After try - catch -finally

finally example
class FinallyTry

{

public static void main(String[] args)

{

try

{

int a=5/2;

}

catch(ArithmeticException ae)

OUTPUT

Inside finally

After try - catch -finally

catch(ArithmeticException ae)

{

System.out.println("Exception is "+ae);

}

finally

{

System.out.println("Inside finally");

}

System.out.println("After try - catch -finally");

}

}
Prepared by Renetha J.B.

20

Here int a=5/2; inside try does not cause exception

(So it is not caught by catch(ArithmeticException ae)

)
Then it enters finally block and prints Inside finally

Then it comes out from try catch finally block

and prints the message

After try - catch -finally

finally Example

class Sample{

void show(int n)

{ int c=10;

try

{

System.out.println("inside try");

c=10/n;

}

catch(Exception e)

{

System.out.println("Exception caught"+e);

class Finally1

{

public static void main(String[] args)

{

Sample ob=new Sample();

ob.show(1);

ob.show(0);

System.out.println(“Finished");System.out.println("Exception caught"+e);

}

finally

{

System.out.println("Finally done");

}

}

}

System.out.println(“Finished");

}

}

Prepared by Renetha J.B.
21

inside try

Finally done

inside try
Exception caughtjava.lang.ArithmeticException: / by zero

Finally done

Finished

class FinallyDemo {

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {
}

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

Prepared by Renetha J.B. 22

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Prepared by Renetha J.B. 23

