Prepared by Sharika T R, SNGCE

CST281

Object Oriented Programming

MODULE 3
More features of Java

More features of Java:

Inheritance - Super Class, Sub Class, The Keyword super,
protected Members, Calling Order of Constructors, Method
Overriding, the Object class, Abstract Classes and Methods, Using
final with Inheritance.

Packages and Interfaces - Defining Package, CLASSPATH, Access
Protection, Importing Packages, Interfaces.

Exception Handling - Checked Exceptions, Unchecked Exceptions,
try Block and catch Clause,

Multiple catch Clauses, Nested try Statements, throw, throws and
finally.

2

Prepared by Sharika T R, SNGCE

* Inheritance —
— Super Class,
— Sub Class,
— The Keyword super,
— protected Members,
— Calling Order of Constructors,
— Method Overriding,
— the Object class,
— Abstract Classes and Methods,
— Using final with Inheritance.

3
* Inheritance helps to create hierarchical classifications.
» Using inheritance we can create a general class(base or
super class) that defines features common to a set of

related items.

— This class can then be inherited by other, more specific
classes(subclasses).

Prepared by Sharika T R, SNGCE

» A subclass is a specialized version of a superclass.

» Subclass inherits all of the instance variables and
methods defined by the superclass and adds its own,
unique elements.

* Toinherit a class, we have to use extends keyword along
with subclass definition.

class superclass

{ /Istatements...... }

class subclass extends superclass

{ /lstatements...... } 5

/I A sim
class
{
inti, j;
void showij()

{

System.out.printin("i and j: "+ i+ " " +j);]
) y P (:) Here A is the superclass of B

}

class B extends A {
int k;
void showk() {
System.out.printin("k: " + Kk);
}
void sum() {
System.out.printin("i+j+k: " + (i+j+k));

} 6

Prepared by Sharika T R, SNGCE

class A
{
mtL g superOb = new A();
zint 11 j A superOb AQ
‘{701 showij() B subOb = new B();
System.out.println(i + " " +); superOb.i = 10;
) superOb.j = 20;
} System.out.println(“Superobj Contents "): :
class B extends A superOb.showij(); ?;ﬁf;ﬁfé
{ subOb.i =7, 10 20
int k: subObj = 8; subOb contents
: : 78
void showk() { subOb.k =9; k: 9
System.out.println("k: " + k); System.out.println("subOb contents ");| Sum in subOb:24
'}d subOb.showij();
‘Smlsteigrcr)lfl)t {rintln(“sum "+ (i+j+k)); sub0bshowk():
y } P] " System.out.println("Sum in subOb:");
| subOb.sum(); } } '

Member Access and Inheritance

» Subclass cannot access the private members in superclass.

class A {
int i; // public by default
private int j; // private to A

A class member that has been
declared as private will remain

void setj(int x) {j = x; }; private to its class.

} It is not accessible by any code
class B extends A { Zzzsclges se/f class, including
int total;

void sum() {

total =i + j; // ERROR, j(private) is not accessible here

ol 5

Prepared by Sharika T R, SNGCE

A major advantage of inheritance is that once you have created a
superclass that defines the attributes common to a set of objects,
it can be used to create any number of more specific subclasses.

» Each subclass can have its own special features also.

* You can only specify one superclass for any subclass that you
create.

» Java does not support the inheritance of multiple superclasses
into a single subclass.

* You can, as stated, create a hierarchy of inheritance in which a
subclass becomes a superclass of another subclass.

» However, no class can be a superclass of itself.

Superclass Variable Can Reference a Subclass
Obje

* Areference variable of a superclass can be assigned a
reference to any subclass derived from that superclass.

class A

{ }

class B extends A

{ }

class Sample

{
A oba=new A();
B obb=new B();
oba=obb;

Superclassobject=subclassobject

10

Prepared by Sharika T R, SNGCE

class Parent class InhRefsub{
{
int a,b; public static void main(String args[])
void area() {
{ System.out.println(‘“Product="+ a*b); Parent pob=new Parent();
} pob.area();
} Sub subob=new Sub(10,20,30);
class Sub extends Parent pob=subob;
{ inti; pob.area();
Sub(int x,int y,int z) //System.out.println(“i="+ pob.i);//ERROR
{ }
a=x; }
b=y;
i=z; OuTPUT
} Product=0
} Product=200 11

« Whenever a subclass needs to refer to its immediate
superclass, it can be done using the keyword super.
 super has two general forms.
1. To call the superclass’ constructor.

2. To access a member of the superclass that has been hidden
by a member of a subclass.

Prepared by Sharika T R, SNGCE

Using super to Call Superclass Constructors

» A subclass can call a constructor defined by its
superclass by use of the following form of super:

super(arg-list);
» Here, arg-list specifies any arguments needed by the
constructor in the superclass.

» super() must always be the first statement executed
inside a subclass’ constructor.

13

class Parent class SupersubDemo{ I

{ Farent() public static void main(String args]])
{
_ Sub subob=new Sub();
System.out.printin("Superclass"); }
} o}
class Sub extends Parent }
{ OUTPUT
Sub() Superclass
{ Subclass
super();
System.out.printin("Subclass");
} 14
}

Prepared by Sharika T R, SNGCE

super keyword to access member

 super always refers to the superclass of the subclassin
which it is used.

» To access the member in superclass from subclass
super.member
— Here member can be either a method or an instance variable.

* If subclass contains same variable as superclass, then in
subclass, the superclass member will be hidden by
corresponding subclass member.

— This can be prevented using super keyword

15

cla.sstA. { class UseSuper {
) e public static void main(String args[])
class B extends A {
{ int1;// this i hides the i in A B subOb = new B(1, 2);
B(int a, int b) { subOb.show();
super.i =a;//iinA
i=b;/iinB }

) }
void show() {

System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " +1);

}
}

OUTPUT
i in superclass: 1
i in subclass: 2

16

Prepared by Sharika T R, SNGCE

Creating multiple hierarchy

class A class C extends B
{ intx; { int z;
A(int p) C(int p,int g,int r){
{ System.out.println("Superclass A "); super(p,q);
Xx=p; } System.out.println("C Subclass of A"); W
} Superclass A Z=1, D
class B extends A B Subclass of A bl
{ inty; C Subclass of A class Multipleinh{
B(int p,int q) Xi;g public static void main(String args[])
{ i { Cob=new C(10,2030);
super(p); System.out.println("x="+o0b.x);
System.out.println("B Subclass of A"); System.out.println("y="+0b.y):
| =4 System.out.println("z="+0b.x);
} J 17
}
* Inheritance —
— Super Class,

— Sub Class,

— The Keyword super,

— protected Members,

— Calling Order of Constructors,
— Method Overriding,

— the Object class,

— Abstract Classes and Methods,

— Using final with Inheritance.

18

Prepared by Sharika T R, SNGCE

Protected members

» Protected members are declared by prefixing the access
specifier protected.
protected datatype member;

* The protected member in a class can be accessed by
—any class within the same package.
— direct sub-classes in other package also.

19

« If you want to allow an class A
element(member) to be seen {
outside your current protected int c;//protected variable
package, but only to classes int a:
that subclass your class - .
rivate char b;
directly, then declare that gubli ¢ float f:
element (member) protected. protected void add()//protected method
{
/[statements
}

/Imethods and statements

}

20

Prepared by Sharika T R, SNGCE

Calling Order of Constructors

e Constructors are called in the order of derivation, from
superclass to subclass

» When subclass object is created, it first calls superclass
constructor then only it calls subclass constructor.

* If super() is not used to call superclass constructor, then
the default constructor of each superclass will be
executed before executing subclass constructors.

21

class A class Consorder
{ inti; {
A() public static void main(String argsl])
{ System.out.printin("Constructor of {
superclass A"); B obb =new B();
pod }
class B extends A }
{ intj;
B() OUTPUT
{ System.out.printin("Constructor of Constructor of superclass A
subclass B"); Constructor of subclass B
b}
22

Prepared by Sharika T R, SNGCE

class A
{ inti;
A()

{ System.out.printin("Constructor of
superclass A");

} o}
class B extends A
{ intj;

B()

{

System.out.printin("Constructor of
subclass B");

bl

class C extends B

{ intj;
C()

{ System.out.printin("Constructor of
subclass C");

bl

class Consorder
{ public static void main(String argsl[])
{ Cobc =new C(); }

}

OUTPUT

Constructor of superclass A
Constructor of subclass B
Constructor of subclass C

» Superclass has no knowledge of any subclass, any

initialization it needs to perform is separate and it should

be done as a prerequisite to initialize the subclass object.

» Therefore, superclass constructors are executed before

executing subclass constructors, when we create

subclass object.

Prepared by Sharika T R, SNGCE

Method Overriding

* In a class hierarchy, when a method in a subclass has the
same name and type signature as a method in its
superclass, then the method in the subclass is said to
override the method in the superclass.

 Thisis called METHOD OVERRIDING

 When an overridden method is called from within a
subclass, it will always refer to the method defined by the
subclass.

— The version of the method defined by the superclass will be
hidden.

25

/l Meth
class A{
inti, j; class Override {
A(int a, int b) { public static void main(String args[])
i=a; {
j=b; }

_ B subOb = new B(1, 2, 3);
void show() { _ :
System.out.printin(" i : " + i +"j: " +j); subOb.show(); // this calls show() in B

}) } o}
class B extends A { OUTPUT
int k; k: 3
B(int a, intb, intc) { — :
super(a, b); When show() is |r_1voked on an object
AN of type B, the version of show()
k=c; '} defined within B is used.
void show() { That is, the version of show() inside
System.out.println("k: "+ k); subclass B overrides the version
}) declared in superclassA. 26

Prepared by Sharika T R, SNGCE

/I Meth
class A{
int i, j; class Override {
A(int a, intb) { public static void main(String args|[])
i =a; {
J=b B subOb = new B(1, 2, 3):
void show() { . .
System.out.printin(" i : " + i + " j: " + j): subOb.show(); // this calls show() in A
}) b}
class B extends A { _OUTPUT
int k; ii1j:2
B(int a, intb, int c) { Here when show() is invoked on an
su_pe.r(a, b); object of type B, since the version of
_ k=c; } show() is not defined within B the
void display() { version of show() declaredin
System.out.printin("k: " + K); superclassAis called and excuted. .
I

» To access the superclass version of an overridden
method, we can do using super keyword.

Prepared by Sharika T R, SNGCE

/l Meth

class
inti,
A(int a, int b) { class Override {
J! ~ E: } public static void main(String args[])
void show() { {
System.out.printin(" i : " +i+"j;"+j); BsubOb=new B(1, 2, 3);
} o} subOb.show(); // this calls show() in B
CIianTT(.B extends A { 1, OUTPUT
B(int a, intb, int c) { 112
k: 3
super(a, b);
k=c; } When show() is invoked on an object
: of type B, the version of show()
void show() { . defined within B is used..
super.show();
System.out.printin("k: " + k); super.show() calls the show() method
} o} in its superclas. 29

» Method overriding occurs only when the names and the
type signatures of the methods in subclass and
superclass are identical.

* If names and the type signatures of the two methods are
different, then the two methods are simply overloaded.

Prepared by Sharika T R, SNGCE

class A{
inti, j; class Sample {
A() public static void main(String args[]) {
{ i=0; B subOb = new B();
j=0;) subOb.show(“k is "); // this calls show() in B
void show() subOb.show(); // this calls show() in A
{ System.out.printin(“show in A”); }
}} OUTPUT
class B extends A { K'is show in subclass B
int k; show in A
B()
{ k=0; } Here show() Methods have differing
void show(String msg) { type signatures. So they are
System.out.printin(“show in subclass B); overioaded=not overridden
b} 31

The Object Class

There is one special class, Object, defined by Java.
All other classes are subclasses of Object.
That is, Object is a superclass of all other classes.

Reference variable of type Object can refer to an object of
any other class.

32

Prepared by Sharika T R, SNGCE

Methods in Object class

Method

Purpose

Object clonel)

Creates a new object that is the same as the object being cloned.

boolean equals(Object object)

Determines whether one object is equal to another.

void finalize()

Called before an unused object is recycled.

Class getClass()

Obtains the class of an object at run time.

int hashCode()

Returns the hash code associated with the invoking object.

void notify()

Resumes execution of a thread waiting on the invoking object.

void notifyAll()

Resumes execution of all threads waiting on the invoking ohject.

String toString()

Returns a string that describes the object.

void wait{)

void wait({long milliseconds)

void wait({long milliseconds,
int nanoseconds)

Waits on another thread of execution.

* The methods getClass(), notify(), notifyAll(), and wait()

are declared as final.
» The equals() method compares the contents of two

objects.

— It returns true if the objects are equivalent, and false otherwise.

» The toString() method returns a string that contains a
description of the object on which it is called.

— This method is automatically called when an object is output

using printin().

— Many classes override this method.

Prepared by Sharika T R, SNGCE

* Inheritance —
— Super Class,
— Sub Class,
— The Keyword super,
— protected Members,
— Calling Order of Constructors,
— Method Overriding,
— the Object class,
— Abstract Classes and Methods,
— Using final with Inheritance.

Abstract Classes and Methods

« Sometimes we may want to create a superclass that only
defines a generalized form that will be shared by all of its
subclasses, leaving the implementation to be filled by
each subclass.

* If we want some way to ensure that a subclass should
override all necessary methods then we can make them
abstract methods.

* For making a method an abstract method we have use
abstract type modifier.

Prepared by Sharika T R, SNGCE

» Abstract methods are also called as subclasser
responsibility , because they have no implementation in
the superclass, but the implementation should be there in
subclasses by overriding.

» To declare an abstract method syntax s :

abstract type name(parameter-list);

» Abstract function has no body in superclass.

ABSTRACT CLASS

* Any class that contains one or more abstract methods
must also be declared abstract.

» Abstract class can have non abstract methods(concrete
methods) also.

» To declare a class abstract, use the abstract keyword in
front of the class keyword at the beginning of the class

declaration.
abstract class classname

{

} 38

Prepared by Sharika T R, SNGCE

» Abstract classes cannot be instantiated using new
operator.

—i.e. Objects are not created from abstract class.

—Such objects would be useless, because an abstract
class is not fully defined.

* There are no abstract constructors, or abstract static
methods.

* Any subclass of an abstract class must either implement
all of the abstract methods in the superclass, or it should
be declared abstract class.

39

/I A Simple demonstration of abstract. ~ class AbstractDemo {

abstract class A { public static void main(String args[]) {
abstract void callme(); B b = new B();
void callmetoo() { b.callme();
System.out.printin(“concrete method."); b.callmetoo();
} }
} }
class B extends A { Output
void callme() { callme in B

System.out.printin(“callme in B");

}
}

concrete method.

40

Prepared by Sharika T R, SNGCE

« Although abstract classes cannot be used to instantiate
objects, they can be used to create object references,
because Java'’s approach to run-time polymorphismis
implemented through the use of superclass references.

41

/l Using abstract methods and classes. { super(a,b); }
abstract class Figure double area()
{ double dim1; { System.out.printin("Triangle Area");
double dim2; returndim1 *dim2/2; } OUTPUT
Figure(double a, double b) } Rectangle Area
{dim1 = a; Area is 45.0
. ’ Class AbstractAreas { Triangle Area
dim2=">b; } . o . . ;
abstract do’uble area(): public static void main(String args[]) {| Area is 40.0
) ’ // Figure f = new Figure(10, 10); // illegal
Rectangler = Rectangle(9, 5);
class Rectangle extends Figure gelangier = new nectang &(9. 5):
Triangle t = new Triangle(10, 8);
{ Rectangle(double a, double b)
Figure figref; // no object is created
{ super(a, b); } et r
double area() \gret=r

System.out.printin("Areais " + figref. ;
{ System.out.printin("Rectangle Area"); ystem.out printin("Areais * + figref.area());

N figref = t;
return dim1* dim2; } System.out.printin("Areais " + figref.area()); 42
} })

Prepared by Sharika T R, SNGCE

OUTPUT
Rectangle Area
Area is 45.0
Triangle Area
Area is 40.0

» Here all subclasses of abstract class Figure must
override area().

Using final with Inheritance

» Use of final keyword

— final can be used to create the equivalent of a named constant.
E.g. final int TOTAL=0;

— final helps to prevent overriding in inheritance
— final helps to prevent inheritance.

Prepared by Sharika T R, SNGCE

Using final to Prevent Overriding

» To disallow a method from being overridden, we can use
final as a modifier at the start of its method declaration

» Methods declared as final cannot be overridden by
subclass.

45
class A {
final void show()
{ System.out.printin("This is a final method.");

}
}

class B extends A {
void show() // ERROR! Can't override.
{ System.out.printin("lllegal!");

}
}

» Here show() method is declared as final in A. So it cannot be overridden in
subclass B. If we try to override, COMPILE ERROR will occur in ths prograrrlé

Prepared by Sharika T R, SNGCE

» Methods declared as final can sometimes provide a
performance enhancement:

— The compiler is free call them inline because it “knows” they
will not be overridden by a subclass.

« When a small final method is called, Java compiler can
copy the bytecode for the subroutine directly inline with
the compiled code of the calling method, thus eliminating
the costly overhead associated with a method call.

* Inlining is only an option with final methods.

* Normally, Java resolves calls to methods dynamically, at
run time. This is called late binding.
 However, since final methods cannot be overridden, a

call to one can be resolved at compile time. This is called
early binding.

Prepared by Sharika T R, SNGCE

Using final to Prevent Inheritance

» To prevent a class from being inherited it can be declared
as final

» Class with final modifier cannot be inherited. It cannot act
as superclass.

» To make a class a final class, precede the class
declaration with final.

* If we declare a class as final, it implicitly declares all of its
methods as final.

* ltisillegal to declare a class as both abstract and final
since an abstract class is incomplete by itself 4

final class A {
/...
}
Il The following class is illegal.

class B extends A { //ERROR!cannot create a subclass for final class A
...

}

It is illegal for B to inherit A since A is declared as final.

Prepared by Sharika T R, SNGCE

Packages and Interfaces —
»Defining Package,
»CLASSPATH,
»Access Protection,
»Importing Packages,
»Interfaces.

Package

Packages are containers for classes.

A package in Java is used to group related classes and
interfaces.

They are used to keep the class name space compartmentalized.

— For example, a package allows us to create a class named List, which we

can store in our own package and it will not collide with some other class
named List stored elsewhere.

Packages are stored in a hierarchical manner.
The package is both a naming and a visibility control mechanism.

Prepared by Sharika T R, SNGCE

* We can define classes inside a package
— that are not accessible by code outside that package.

(default)
OR
— that can be also accessed by subclasses outside the
package. (protected)
OR

— That can be accessed by all classes in all packages(public)

53
» To create a package, simply include a package command
as the first statement in a Java source file.
— All classes declared in that file will belong to the specified
package.

» The package statement defines a name space in which
classes are stored.

« If we are not writing package statement, the class names
are put into the default package, which has no name.

Prepared by Sharika T R, SNGCE

Defining Package

» General form for creating a package :
package packagename;
« Example: If we write the following statement at the

beginning of our java program then it will create a
package

» eg package named Oop.
package Oop;

Java uses file system directories to store packages.

Example: Any classes that we declare to be part of the
package Oop must store their .class files in a directory
called Oop.

Any file can include the same package statement.

The package statement simply specifies to which package
the classes defined in a file belongs to.

Prepared by Sharika T R, SNGCE

» We can create a hierarchy of packages.

— Separate each package name from other using period(dot)
symbol.

» General form of a multileveled package statementis :

package pkgl.pkg2.pkg3;

» This specifies that package pkg3 is inside package pkg2
and pkg2 package is inside pkg1.

* E.g The package declared as

package java.awt.image;
— needs to be stored in the path java\awt\image in a Windows
environment
« We cannot rename a package without renaming the
directory in which the classes are stored.

Prepared by Sharika T R, SNGCE

Finding Packages and CLASSPATH

* How does the Java run-time system know where to look
for packages that we create?
1. By default, the Java run-time system uses the current working
directory as its starting point.

> if our package is in a subdirectory of the current directory, it will be
found.

2. We can specify a directory path or set paths by setting the
CLASSPATH environmental variable.

3. We can use the -classpath option with java and javac to
specify the path to your classes.

e MyPack; i

packag

» For a program to find MyPack, one of three things must
be true.

— Either the program can be executed from a directory
immediately above MyPack or

—the CLASSPATH must be set to include the path to MyPack,
—or

— the -classpath option must specify the path to MyPack when
the program is run via java

« To execute the program

- java MyPack.programname 60

Prepared by Sharika T R, SNGCE

* In the case of CLASSPATH and —classpath option , the
class path must not include MyPack, itself. It must simply
specify the path to MyPack.

» Suppose the path of MyPack directory is
C:\MyPrograms\Java\MyPack
— Then the class path to MyPack is C:\MyPrograms\Java

61

s and examples for creating and using packages

» Create a folder pack1 inside E drive

» Create afile A.java

package pack1;

public class A

{ public static void main(String args[])
{ System.out.printin("Hello"); }
public void show()
{ System.out.printin(“show in A"); }

} 62

Prepared by Sharika T R, SNGCE

» Take path before pack1 folder in command prompt here it
s E drive.

« Compile using
— E:\>javac pack1/A.java
* Torun
E:\>java pack1/A
* Or
E:\>java pack1.A

» Set classpath in command prompt to path to folder before the

package pack1
C:\Users\USER>set CLASSPATH=;E:\

To compile
C:\Users\USER> javac -cp . E:\pack1\A.java

To run
C:\Users\USER> java pack1.A
Hello

Prepared by Sharika T R, SNGCE

« Using —classpath option

» Compile using

C:\Users\USER> javac E:\pack1\A java

Or

C:\Users\USER> javac -classpath . E:\pack1\A.java
* Run using

C:\Users\USER> java -classpath E:\ pack1.A

65

E.g using import statement

» Create a folder pack2 inside E drive
* Create afile B.javain it
package pack2;
import pack1.”;
class B{
public static void main(String args|])
{ A obj=new A();
obj.show();
System.out.printin(*main in class B"); }

} 66

— Subclasses in the same package
— Non-subclasses in the same package
— Subclasses in different packages
— Classes that are neither in the same package nor subclasses

Prepared by Sharika T R, SNGCE

Access Protection

» Addresses four categories of visibility for class members:

67

Private No Modifier | Protected Public
Same class |Yes |Yes Yes Yes
‘Same 'No Yes Yes Yes
| package
| subclass
| Same 'No Yes Yes Yes
| package _
| non-subclass ‘
; Different No No Yes Yes
| package
subclass ‘
Different No No No Yes
package
non-subclass

68

Prepared by Sharika T R, SNGCE

* A non-nested class has only two possible access levels:
— default
— public.

* When a class is declared as pubilic, it is accessible by anyother code.
public class A {////

}

+ If a class has default access, then it can only be accessed by other code
within its same package.

class B

{}

* When a class is public, it must be the only public class declared in the file,

and the file must have the same name as the public class. 60

Importing Packages

» All of the standard classes are stored in some named package.

* If we want to use classes in some other packages, they must be
fully qualified with their package name or names,.

« It is difficult to type in the long dot-separated package path name
for every class we want to use.
— TO SOLVE THIS PROBLEM, we can use import statement.
— The import statement helps to bring certain classes, or entire packages,

into visibility.

« To use a class or a package from the library, we need to use the
import keyword

« import statements is written after the package statement(if exists)
and before all class definitions. 70

Prepared by Sharika T R, SNGCE

» General form of the import statement:
import pkg1[.pkg2].(classname|*);
— Here, pkg1 is the name of a top-level package, and pkg2 is the

name of a subordinate package inside the package pkg1
separated by a dot

— (.). Here square bracket denotes that it is optional.
* E.g.
import pack1; // import the package pack1
import java.io.*; /[import all the classes from the package java.io
import java.util.Date; //import the Date class from the package java.util

» All of the standard Java classes included with Java are
stored in a package called java

» The basic language functions are stored in a package
inside of the java package called java.lang

— it is implicitly imported by the compiler for all programs.

Prepared by Sharika T R, SNGCE

//Using an import statement:

mmport java.util. ;

class MyDate extends Date {

//statements , methods,variables

}

//Without the import statement looks like this:
class MyDate extends java.util. Date

{
} 73
//Program A.java class B{
package packl; public static void main(String args|])
public class A { packl.A obj=newpackl.A();
{ int a=100; obj.msg();
public it ¢=20); System.out.println(“c="+obj.c);
protected it d=50; //System.out.println("d="+obj.d);
public void msg() // cannot access protected of
{ System.out.println("Base class A //different package i.e. packl
Hello'); //System.out.println("a="+obj.a);
} / /cannot access private of other class
} } } 74

Prepared by Sharika T R, SNGCE

//Program B.java
//Program A java package pack;
package packl; import packl.*;
public class A class B{
{ public static void main(String args|])
mt a=100; t A obj = new A;
obj.msg();

public mt ¢=20);

System.out.println(“c="+obj.c);
protected mt d=50;

//System.out.println("d="+obj.d);

public void msg() // cannot access protected of different
{ System.out.println("Base class A package packl
Hello"): //System.out.println("a="+obj.a);/
) //cannot access private of other class 75

[

» Using import package.classname statement to import
class A in pack1 to program file in pack2

76

Prepared by Sharika T R, SNGCE

//Program B.java
//Program A java package pack;
package packl; import packl.A;
public class A class B{
{ public static void main(String args|])
mt a=100; t A obj = new A;
obj.msg();

public mt ¢=20);

System.out.println(“c="+obj.c);

protected int d=50; //System.out.println("d="+obj.d);

public void msg() // cannot access protected of different
{ System.out.println("Base class A package packl
Hello"): //System.out.println("a="+obj.a);/
) //cannot access private of other class 77

[

Packages

User Defined In Built
Packages Packages

78

Prepared by Sharika T R, SNGCE

Built-in Packages

Java Foundation Packages

» Java provides a large number of classes grouped into
different packages based on their functionality.

Prepared by Sharika T R, SNGCE

» The six foundation Java packages are:
— java.lang
» Contains classes for primitive types, strings, math functions, threads, and exception
— java.util
» Contains classes such as vectors, hash tables, date etc.
— java.io
» Stream classes for I/O
— java.awt
 Classes for implementing GUI — windows, buttons, menus etc.
— java.net
» Classes for networking
— java.applet
 Classes for creating and implementing applets 81

Packages and Interfaces —
»Defining Package,
»CLASSPATH,
»Access Protection,
»|Importing Packages,
»Interfaces.

Prepared by Sharika T R, SNGCE

Interface can be created using the keyword interface.
Interfaces are syntactically similar to classes.
Interface does not have instance variables.

The methods in interface are declared without any body.
— Interface never implements methods.

Any number of classes can implement an interface.

One class can implement any number of interfaces.

— This helps to achieve multiple inheritance.

83
* To implement an interface,

— a class must create and define the complete set of methods
that are declared by the interface.

» Each class can have its own implementation of the
methods.

» By providing the interface keyword, Java allows you to
fully utilize the “one interface, multiple methods” aspect of
polymorphism.

* Interfaces support dynamic method resolution at run time.

84

Prepared by Sharika T R, SNGCE

» General form of an interface:
accessspecifier interface name {
return-type method-namel (parameter-list);
return-type method-name2(parameter-list);
type final-varnamel = value;
type final-varname2 = value;
/] ..
return-type method-nameN (parameter-list);

type final-varnameN = value;

« When no access specifier is included, then it has default access.

— the interface is only available to other members of the package in which it
is declared.

« The methods are declared have no bodies. They end with a
semicolon after the parameter list.

» They are abstract methods.

» Each class that includes an interface must implement all of the
methods.

» Variables re implicitly final and static, meaning they cannot be
changed by the implementing class.
— They must also be initialized.

» All methods and variables are implicitly public

Prepared by Sharika T R, SNGCE

interface Callback {
void show(int param);

}

87

The relationship between classes and interfaces

Class Interface
A class describes the attributes and An interface contains behaviors that a class
behaviors of an object. implements.

A class may contain abstract methods,

An interface contains only abstract methods.
concrete methods.

Members of a class can be public, private, All the members of the interface are public by
protected or default. default.

Relationship between Class and

Interface in Java
class interface interface
rF 9 ;i F 3
Extends : Implements Extends
]

class class interface

Prepared by Sharika T R, SNGCE

/* File name : Animal.java */ /* File name : Mammallnt.java */

interface Animal { public class MammalInt implements Animal {

public void eat();
public void travel(); public void eat() {
I System.out.println(“Mammal eats");

}

public void travel() {
System.out.println(“Mammal travels™);

Qutput }

public int noOfLegs() {
Mammal eats return @;

Mammal travels }

public static void main(String args[]) {
MammalInt m = new MammalInt();
m.eat();
m.travel();
¥
}

89

Extending Interfaces

» The extends keyword is used to extend an interface, and
the child interface inherits the methods of the parent
interface.

90

Prepared by Sharika T R, SNGCE

// Filename: Sports.java
public interface Sports {

public void setHomeTeam(String name);
public void setVisitingTeam(String name);

} * The Hockey interface has
four methods, but it inherits
// Filename: Football.java two from Sports; thus, a class

public interface Football extends Sports { .
public void homeTeamScored(int points); that |mplementS HOCkey

public void visitingTeamScored{int points); needs to implement all six

public void end0fQuarter(int quarter); methods.
} .
» Similarly, a class that
// Filename: Hockey.java implements Football needs to
public interface Hockey extends Sports { define the three methods
public void homeGoalScored();
public void visitingGoalScored(); from Football and the two
public void end0fPeriod(int period); methods from SpOftS.
public void overtimePeriod(int ot); o1
}

Variables in Interfaces

 When we include an interface in a class (using
“implement” the interface), all of those variable names in
the interface will be in scope as constants.

— That is they are imported to class name space as final
variables.

92

Prepared by Sharika T R, SNGCE

import java.utiLRandom;
interface Interf {

int NO=0;

intYES=1;

1

class Question implements Interf
{

Random rand = new Random();
int ask() {

int prob = (int) (100 * rand.nextDouble());
if (prob < 50)

return NO; // 30%

else

return YES;

}
1

—_ Jjava
class AskMe implements Interf
l

static void answer(int result) {

switch(result) {

case NO:

System.out.println("No");

break;

case YES:

System.out.printIn(" Yes"):

break; } }

public static void main(String args|])
{

Question q = new Question();
answer(q.ask()): }

93

Partial Implementations

+ If a class includes an interface but does not fully implement the
methods required by that interface, then that class must be

declared as abstract.
mterface Callback {

void show(int param); }

abstract class Incomplete implements Callback {

mt a, b;

void display()

{ System.out.println(“display”);
H

* Here the class Incomplete does not implement show() in the
* interface Callback. So the class Incomplete is abstract class

94

Prepared by Sharika T R, SNGCE

Nested Interfaces

An interface can be declared a member of a class or
another interface. Such an interface is called a member
interface or a nested interface.

» A nested interface can be declared as public, private, or
protected.

» The top level interface must either be declared as public
or use the default access level.

* |f we want to use a nested interface outside of its
enclosing scope, the nested interface must be qualified by
the name of the class or interface of which itis a memberg.5

class NestedIFDemo |

class A
{ public static void main(String args[])

/ this is a nested interface

public interface NestedIF

{
.) A.NestedIF nif = new B();
boolean isNotNeg(int x); ese o n.ew O
if(nif.isNotNeg(10))

] } System.out.println("10 is not negative");
}

class B implements A.NestedIF {

public boolean isNotNeg (intx)

{

return x < 0 ? false: true:

)

96

)

