
CST281

Object Oriented Programming

MODULE 3

More features of Java

Prepared by Sharika T R, SNGCE

2

Syllabus

More features of Java:

Inheritance - Super Class, Sub Class, The Keyword super,

protected Members, Calling Order of Constructors, Method

Overriding, the Object class, Abstract Classes and Methods, Using

final with Inheritance.

Packages and Interfaces - Defining Package, CLASSPATH, Access

Protection, Importing Packages, Interfaces.

Exception Handling - Checked Exceptions, Unchecked Exceptions,

try Block and catch Clause,

Multiple catch Clauses, Nested try Statements, throw, throws and

finally.

• Inheritance –

– Super Class,

– Sub Class,

– The Keyword super,

– protected Members,

– Calling Order of Constructors,

– Method Overriding,

– the Object class,

– Abstract Classes and Methods,

– Using final with Inheritance.
3

Prepared by Sharika T R, SNGCE

Inheritance

• Inheritance helps to create hierarchical classifications.

• Using inheritance we can create a general class(base or

super class) that defines features common to a set of

related items.

– This class can then be inherited by other, more specific

classes(subclasses).

4

• A subclass is a specialized version of a superclass.

• Subclass inherits all of the instance variables and

methods defined by the superclass and adds its own,

unique elements.

• To inherit a class, we have to use extends keyword along

with subclass definition.

class superclass

{ //statements……}
class subclass extends superclass

{ //statements……}

5

Prepared by Sharika T R, SNGCE

// A simple example of inheritance.

class A

{

int i, j;

void showij()

{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

void showk() {

 System.out.println("k: " + k);

 }

void sum() {

 System.out.println("i+j+k: " + (i+j+k));

 }

}
6

Here A is the superclass of B

A

B

class A

{

int i, j;

void showij()

{

System.out.println(i + " " + j);

}

}

class B extends A

 {

int k;

void showk() {

 System.out.println("k: " + k);

 }

void sum() {

System.out.println(“sum " + (i+j+k));

 }

}

class SimpleInheritance

{

public static void main(String args[]) {

A superOb = new A();

B subOb = new B();

superOb.i = 10;

superOb.j = 20;

System.out.println(“Superobj Contents ");
superOb.showij();

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("subOb contents ");

subOb.showij();

subOb.showk();

System.out.println("Sum in subOb:");

subOb.sum(); } }
7

Superobj

Contents

10 20

subOb contents

7 8
k: 9

Sum in subOb:24

Prepared by Sharika T R, SNGCE

Member Access and Inheritance

• Subclass cannot access the private members in superclass.

class A {

int i; // public by default

private int j; // private to A

void setj(int x) { j = x; };

}

class B extends A {

int total;

void sum() {

total = i + j; // ERROR, j(private) is not accessible here

} }

8

A class member that has been

declared as private will remain

private to its class.

It is not accessible by any code

outside its class, including

subclasses.

• A major advantage of inheritance is that once you have created a

superclass that defines the attributes common to a set of objects,

it can be used to create any number of more specific subclasses.

• Each subclass can have its own special features also.

• You can only specify one superclass for any subclass that you

create.

• Java does not support the inheritance of multiple superclasses

into a single subclass.

• You can, as stated, create a hierarchy of inheritance in which a

subclass becomes a superclass of another subclass.

• However, no class can be a superclass of itself.

9

Prepared by Sharika T R, SNGCE

A Superclass Variable Can Reference a Subclass

Object
• A reference variable of a superclass can be assigned a

reference to any subclass derived from that superclass.

class A

{ }

class B extends A

{ }

class Sample

{

 A oba=new A();

 B obb=new B();

 oba=obb;

}
10

Superclassobject=subclassobject

class Parent

{

 int a,b;

 void area()

 { System.out.println(“Product="+ a*b);
 }

}

class Sub extends Parent

{ int i;

 Sub(int x,int y,int z)

 {

 a=x;

 b=y;

 i=z;

 }

}

class InhRefsub{

public static void main(String args[])

{

 Parent pob=new Parent();

 pob.area();

 Sub subob=new Sub(10,20,30);

 pob=subob;

 pob.area();

//System.out.println(“i="+ pob.i);//ERROR

 }

}

OUTPUT

Product=0

Product=200

11

Prepared by Sharika T R, SNGCE

Using super

• Whenever a subclass needs to refer to its immediate

superclass, it can be done using the keyword super.

• super has two general forms.

1. To call the superclass’ constructor.
2. To access a member of the superclass that has been hidden

by a member of a subclass.

12

Using super to Call Superclass Constructors

• A subclass can call a constructor defined by its

superclass by use of the following form of super:

super(arg-list);

• Here, arg-list specifies any arguments needed by the

constructor in the superclass.

• super() must always be the first statement executed

inside a subclass’ constructor.

13

Prepared by Sharika T R, SNGCE

class Parent

{ Parent()

 {

System.out.println("Superclass");

} }

class Sub extends Parent

{

 Sub()

 {

 super();

 System.out.println("Subclass");

 }

}

class SupersubDemo{

 public static void main(String args[])

 {

 Sub subob=new Sub();

 }

}

14

OUTPUT

Superclass

Subclass

super keyword to access member

• super always refers to the superclass of the subclass in

which it is used.

• To access the member in superclass from subclass

 super.member

– Here member can be either a method or an instance variable.

• If subclass contains same variable as superclass, then in

subclass, the superclass member will be hidden by

corresponding subclass member.

– This can be prevented using super keyword

 15

Prepared by Sharika T R, SNGCE

class A {

 int i;

}

class B extends A

{ int i; // this i hides the i in A

 B(int a, int b) {

 super.i = a; // i in A

 i = b; // i in B

}

void show() {

 System.out.println("i in superclass: " + super.i);

 System.out.println("i in subclass: " + i);

 }

}

class UseSuper {

 public static void main(String args[])

 {

 B subOb = new B(1, 2);

 subOb.show();

 }

}

16

OUTPUT

i in superclass: 1

i in subclass: 2

Creating multiple hierarchy

class A

{ int x;

 A(int p)

 { System.out.println("Superclass A ");

 x=p; }

}

class B extends A

{ int y;

 B(int p,int q)

 {

 super(p);

 System.out.println("B Subclass of A");

 y=q;

 }

}

class C extends B

{ int z;

 C(int p,int q,int r){

 super(p,q);

 System.out.println("C Subclass of A");

 z=r;

} }

class Multipleinh{

 public static void main(String args[])

 { C ob=new C(10,20,30);

 System.out.println("x="+ob.x);

 System.out.println("y="+ob.y);

 System.out.println("z="+ob.x);

 }

 }

17

Superclass A

B Subclass of A

C Subclass of A

x=10

y=20

z=10

A

B

C

Prepared by Sharika T R, SNGCE

• Inheritance –

– Super Class,

– Sub Class,

– The Keyword super,

– protected Members,

– Calling Order of Constructors,

– Method Overriding,

– the Object class,

– Abstract Classes and Methods,

– Using final with Inheritance.
18

Protected members

• Protected members are declared by prefixing the access

specifier protected.

protected datatype member;

• The protected member in a class can be accessed by

– any class within the same package.

– direct sub-classes in other package also.

19

Prepared by Sharika T R, SNGCE

• If you want to allow an

element(member) to be seen

outside your current

package, but only to classes

that subclass your class

directly, then declare that

element (member) protected.

class A
{

 protected int c;//protected variable

 int a;
 private char b;

 public float f;
 protected void add()//protected method

 {

 //statements
 }

//methods and statements
}

20

Calling Order of Constructors

• Constructors are called in the order of derivation, from

superclass to subclass

• When subclass object is created, it first calls superclass

constructor then only it calls subclass constructor.

• If super() is not used to call superclass constructor, then

the default constructor of each superclass will be

executed before executing subclass constructors.

21

Prepared by Sharika T R, SNGCE

class A

{ int i;

 A()

 { System.out.println("Constructor of

superclass A");

} }

class B extends A

{ int j;

 B()

 { System.out.println("Constructor of

subclass B");

} }

class Consorder

{

 public static void main(String args[])

 {

 B obb =new B();

 }

}

22

OUTPUT

Constructor of superclass A

Constructor of subclass B

class A

{ int i;

 A()

 { System.out.println("Constructor of

superclass A");

} }

class B extends A

{ int j;

 B()

 {

 System.out.println("Constructor of

subclass B");

} }

class C extends B

{ int j;

 C()

 { System.out.println("Constructor of

subclass C");

} }

class Consorder

{ public static void main(String args[])

 { C obc =new C(); }

}

23

OUTPUT

Constructor of superclass A

Constructor of subclass B

Constructor of subclass C

Prepared by Sharika T R, SNGCE

• Superclass has no knowledge of any subclass, any

initialization it needs to perform is separate and it should

be done as a prerequisite to initialize the subclass object.

• Therefore, superclass constructors are executed before

executing subclass constructors, when we create

subclass object.

24

Method Overriding

• In a class hierarchy, when a method in a subclass has the

same name and type signature as a method in its

superclass, then the method in the subclass is said to

override the method in the superclass.

• This is called METHOD OVERRIDING

• When an overridden method is called from within a

subclass, it will always refer to the method defined by the

subclass.

– The version of the method defined by the superclass will be

hidden.

25

Prepared by Sharika T R, SNGCE

// Method overriding.

class A {

 int i, j;

 A(int a, int b) {

 i = a;

 j = b; }

void show() {

 System.out.println(" i : " + i + " j: " + j);

} }

class B extends A {

 int k;

 B(int a, int b, int c) {

 super(a, b);

 k = c; }

void show() {

 System.out.println("k: " + k);

} }

class Override {

public static void main(String args[])

{

 B subOb = new B(1, 2, 3);

 subOb.show(); // this calls show() in B

} }

26

OUTPUT

k: 3

When show() is invoked on an object

of type B, the version of show()

defined within B is used.

That is, the version of show() inside

subclass B overrides the version

declared in superclass A.

// Method overriding.

class A {

 int i, j;

 A(int a, int b) {

 i = a;

 j = b; }

void show() {

 System.out.println(" i : " + i + " j: " + j);

} }

class B extends A {

 int k;

 B(int a, int b, int c) {

 super(a, b);

 k = c; }

void display() {

 System.out.println("k: " + k);

} }

class Override {

public static void main(String args[])

{

 B subOb = new B(1, 2, 3);

 subOb.show(); // this calls show() in A

} }

27

OUTPUT

i: 1 j: 2

Here when show() is invoked on an

object of type B, since the version of

show() is not defined within B the

version of show() declared in

superclass A is called and excuted.

Prepared by Sharika T R, SNGCE

• To access the superclass version of an overridden

method, we can do using super keyword.

28

// Method overriding.

class A {

 int i, j;

 A(int a, int b) {

 i = a;

 j = b; }

void show() {

 System.out.println(" i : " + i + " j: " + j);

} }

class B extends A {

 int k;

 B(int a, int b, int c) {

 super(a, b);

 k = c; }

void show() {

 super.show();

 System.out.println("k: " + k);

} }

class Override {

public static void main(String args[])

{

 B subOb = new B(1, 2, 3);

 subOb.show(); // this calls show() in B

} }

29

OUTPUT

i:1 j:2

k: 3

When show() is invoked on an object

of type B, the version of show()

defined within B is used..

super.show() calls the show() method

in its superclas.

Prepared by Sharika T R, SNGCE

• Method overriding occurs only when the names and the

type signatures of the methods in subclass and

superclass are identical.

• If names and the type signatures of the two methods are

different, then the two methods are simply overloaded.

30

class A {

 int i, j;

 A()

 { i = 0;

 j = 0; }

 void show()

 { System.out.println(“show in A”);
} }

class B extends A {

 int k;

 B()

 { k = 0; }

 void show(String msg) {

 System.out.println(“show in subclass B”);
} }

class Sample {

public static void main(String args[]) {

B subOb = new B();

subOb.show(“k is "); // this calls show() in B

subOb.show(); // this calls show() in A

}

31

OUTPUT

K is show in subclass B

show in A

Here show() Methods have differing

type signatures. So they are

overloaded – not overridden

Prepared by Sharika T R, SNGCE

The Object Class

• There is one special class, Object, defined by Java.

• All other classes are subclasses of Object.

• That is, Object is a superclass of all other classes.

• Reference variable of type Object can refer to an object of

any other class.

32

Methods in Object class

33

Prepared by Sharika T R, SNGCE

• The methods getClass(), notify(), notifyAll(), and wait()

are declared as final.

• The equals() method compares the contents of two

objects.

– It returns true if the objects are equivalent, and false otherwise.

• The toString() method returns a string that contains a

description of the object on which it is called.

– This method is automatically called when an object is output

using println().

– Many classes override this method.

34

• Inheritance –

– Super Class,

– Sub Class,

– The Keyword super,

– protected Members,

– Calling Order of Constructors,

– Method Overriding,

– the Object class,

– Abstract Classes and Methods,

– Using final with Inheritance.
35

Prepared by Sharika T R, SNGCE

Abstract Classes and Methods

• Sometimes we may want to create a superclass that only

defines a generalized form that will be shared by all of its

subclasses, leaving the implementation to be filled by

each subclass.

• If we want some way to ensure that a subclass should

override all necessary methods then we can make them

abstract methods.

• For making a method an abstract method we have use

abstract type modifier.

36

• Abstract methods are also called as subclasser

responsibility , because they have no implementation in

the superclass, but the implementation should be there in

subclasses by overriding.

• To declare an abstract method syntax is :

abstract type name(parameter-list);

• Abstract function has no body in superclass.

.

37

Prepared by Sharika T R, SNGCE

ABSTRACT CLASS

• Any class that contains one or more abstract methods

must also be declared abstract.

• Abstract class can have non abstract methods(concrete

methods) also.

• To declare a class abstract, use the abstract keyword in

front of the class keyword at the beginning of the class

declaration.
abstract class classname
{

}

38

• Abstract classes cannot be instantiated using new

operator.

– i.e. Objects are not created from abstract class.

– Such objects would be useless, because an abstract

class is not fully defined.

• There are no abstract constructors, or abstract static

methods.

• Any subclass of an abstract class must either implement

all of the abstract methods in the superclass, or it should

be declared abstract class.

39

Prepared by Sharika T R, SNGCE

// A Simple demonstration of abstract.

abstract class A {

 abstract void callme();

 void callmetoo() {

 System.out.println(“concrete method.");
 }

}

class B extends A {

 void callme() {

 System.out.println(“callme in B");
 }

}

class AbstractDemo {

 public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

 }

}

40

Output

callme in B

concrete method.

• Although abstract classes cannot be used to instantiate

objects, they can be used to create object references,

because Java’s approach to run-time polymorphism is

implemented through the use of superclass references.

41

Prepared by Sharika T R, SNGCE

// Using abstract methods and classes.

abstract class Figure

{ double dim1;

 double dim2;

 Figure(double a, double b)

 { dim1 = a;

 dim2 = b; }

 abstract double area();

}

class Rectangle extends Figure

{ Rectangle(double a, double b)

 { super(a, b); }

 double area()

 { System.out.println("Rectangle Area");

 return dim1 * dim2; }

}

class Triangle extends Figure {

 Triangle(double a, double b)

 { super(a, b); }

 double area()

 { System.out.println("Triangle Area");

 return dim1 * dim2 / 2; }

}

Class AbstractAreas {

 public static void main(String args[]) {

 // Figure f = new Figure(10, 10); // illegal

 Rectangle r = new Rectangle(9, 5);

 Triangle t = new Triangle(10, 8);

 Figure figref; // no object is created

 figref = r;

 System.out.println("Area is " + figref.area());

 figref = t;

 System.out.println("Area is " + figref.area());

} }

42

OUTPUT

Rectangle Area

Area is 45.0

Triangle Area

Area is 40.0

• Here all subclasses of abstract class Figure must

override area().

43

OUTPUT

Rectangle Area

Area is 45.0

Triangle Area

Area is 40.0

Prepared by Sharika T R, SNGCE

Using final with Inheritance

• Use of final keyword

– final can be used to create the equivalent of a named constant.

E.g. final int TOTAL=0;

– final helps to prevent overriding in inheritance

– final helps to prevent inheritance.

44

Using final to Prevent Overriding

• To disallow a method from being overridden, we can use

final as a modifier at the start of its method declaration

• Methods declared as final cannot be overridden by

subclass.

45

Prepared by Sharika T R, SNGCE

class A {

final void show()

{ System.out.println("This is a final method.");

}
}

class B extends A {

void show() // ERROR! Can't override.

{ System.out.println("Illegal!");

}
}

• Here show() method is declared as final in A. So it cannot be overridden in

subclass B. If we try to override, COMPILE ERROR will occur in ths program.

46

• Methods declared as final can sometimes provide a

performance enhancement:

– The compiler is free call them inline because it “knows” they
will not be overridden by a subclass.

• When a small final method is called, Java compiler can

copy the bytecode for the subroutine directly inline with

the compiled code of the calling method, thus eliminating

the costly overhead associated with a method call.

• Inlining is only an option with final methods.

47

Prepared by Sharika T R, SNGCE

• Normally, Java resolves calls to methods dynamically, at

run time. This is called late binding.

• However, since final methods cannot be overridden, a

call to one can be resolved at compile time. This is called

early binding.

48

Using final to Prevent Inheritance

• To prevent a class from being inherited it can be declared

as final

• Class with final modifier cannot be inherited. It cannot act

as superclass.

• To make a class a final class, precede the class

declaration with final.

• If we declare a class as final, it implicitly declares all of its

methods as final.

• It is illegal to declare a class as both abstract and final

since an abstract class is incomplete by itself

49

Prepared by Sharika T R, SNGCE

final class A {

 // ...

 }

// The following class is illegal.

class B extends A { //ERROR!cannot create a subclass for final class A

// ...

}

It is illegal for B to inherit A since A is declared as final.

50

Packages and Interfaces –

Defining Package,

CLASSPATH,

Access Protection,

Importing Packages,

Interfaces.

51

Prepared by Sharika T R, SNGCE

Package

• Packages are containers for classes.

• A package in Java is used to group related classes and

interfaces.

• They are used to keep the class name space compartmentalized.

– For example, a package allows us to create a class named List, which we

can store in our own package and it will not collide with some other class

named List stored elsewhere.

• Packages are stored in a hierarchical manner.

• The package is both a naming and a visibility control mechanism.

52

• We can define classes inside a package

– that are not accessible by code outside that package.

(default)

OR

– that can be also accessed by subclasses outside the

package. (protected)

OR

– That can be accessed by all classes in all packages(public)

53

Prepared by Sharika T R, SNGCE

• To create a package, simply include a package command

as the first statement in a Java source file.

– All classes declared in that file will belong to the specified

package.

• The package statement defines a name space in which

classes are stored.

• If we are not writing package statement, the class names

are put into the default package, which has no name.

54

Defining Package

• General form for creating a package :

package packagename;

• Example: If we write the following statement at the

beginning of our java program then it will create a

package

• eg package named Oop.

package Oop;

55

Prepared by Sharika T R, SNGCE

• Java uses file system directories to store packages.

• Example: Any classes that we declare to be part of the

package Oop must store their .class files in a directory

called Oop.

• Any file can include the same package statement.

• The package statement simply specifies to which package

the classes defined in a file belongs to.

56

• We can create a hierarchy of packages.

– Separate each package name from other using period(dot)

symbol.

• General form of a multileveled package statement is :

package pkg1.pkg2.pkg3;

• This specifies that package pkg3 is inside package pkg2

and pkg2 package is inside pkg1.

57

Prepared by Sharika T R, SNGCE

• E.g The package declared as

package java.awt.image;

– needs to be stored in the path java\awt\image in a Windows

environment

• We cannot rename a package without renaming the

directory in which the classes are stored.

58

Finding Packages and CLASSPATH

• How does the Java run-time system know where to look

for packages that we create?

1. By default, the Java run-time system uses the current working

directory as its starting point.

 if our package is in a subdirectory of the current directory, it will be

found.

2. We can specify a directory path or set paths by setting the

CLASSPATH environmental variable.

3. We can use the -classpath option with java and javac to

specify the path to your classes.

59

Prepared by Sharika T R, SNGCE

CLASSPATH

package MyPack;

• For a program to find MyPack, one of three things must

be true.

– Either the program can be executed from a directory

immediately above MyPack or

– the CLASSPATH must be set to include the path to MyPack,

– or

– the -classpath option must specify the path to MyPack when

the program is run via java

• To execute the program

– java MyPack.programname 60

• In the case of CLASSPATH and –classpath option , the

class path must not include MyPack, itself. It must simply

specify the path to MyPack.

• Suppose the path of MyPack directory is

C:\MyPrograms\Java\MyPack

– Then the class path to MyPack is C:\MyPrograms\Java

61

Prepared by Sharika T R, SNGCE

Steps and examples for creating and using packages

• Create a folder pack1 inside E drive

• Create a file A.java

package pack1;

public class A

{ public static void main(String args[])

 { System.out.println("Hello"); }

 public void show()

 { System.out.println(“show in A"); }
}

62

Method 1

• Take path before pack1 folder in command prompt here it

s E drive.

• Compile using

– E:\>javac pack1/A.java

• To run

E:\>java pack1/A

• Or

E:\>java pack1.A

63

Prepared by Sharika T R, SNGCE

Method 2

• Set classpath in command prompt to path to folder before the

package pack1

C:\Users\USER>set CLASSPATH=;E:\

To compile

C:\Users\USER> javac -cp . E:\pack1\A.java

To run

C:\Users\USER> java pack1.A

Hello
64

Method 3

• Using –classpath option

• Compile using

C:\Users\USER> javac E:\pack1\A.java

Or

C:\Users\USER> javac -classpath . E:\pack1\A.java

• Run using

C:\Users\USER> java -classpath E:\ pack1.A

65

Prepared by Sharika T R, SNGCE

E.g using import statement

• Create a folder pack2 inside E drive

• Create a file B.java in it

package pack2;

import pack1.*;

class B{

 public static void main(String args[])

 { A obj = new A();

 obj.show();

 System.out.println(“main in class B"); }
}

66

Access Protection

• Addresses four categories of visibility for class members:

– Subclasses in the same package

– Non-subclasses in the same package

– Subclasses in different packages

– Classes that are neither in the same package nor subclasses

67

Prepared by Sharika T R, SNGCE

68

• A non-nested class has only two possible access levels:

– default

– public.

• When a class is declared as public, it is accessible by any other code.

public class A {////

}

• If a class has default access, then it can only be accessed by other code

within its same package.

class B

{ }

• When a class is public, it must be the only public class declared in the file,

and the file must have the same name as the public class.
69

Prepared by Sharika T R, SNGCE

Importing Packages

• All of the standard classes are stored in some named package.

• If we want to use classes in some other packages, they must be

fully qualified with their package name or names,.

• It is difficult to type in the long dot-separated package path name

for every class we want to use.

– TO SOLVE THIS PROBLEM, we can use import statement.

– The import statement helps to bring certain classes, or entire packages,

into visibility.

• To use a class or a package from the library, we need to use the

import keyword

• import statements is written after the package statement(if exists)

and before all class definitions. 70

• General form of the import statement:

import pkg1[.pkg2].(classname|*);

– Here, pkg1 is the name of a top-level package, and pkg2 is the

name of a subordinate package inside the package pkg1

separated by a dot

– (.). Here square bracket denotes that it is optional.

• E.g.

import pack1; // import the package pack1

import java.io.*; // import all the classes from the package java.io

import java.util.Date; //import the Date class from the package java.util 71

Prepared by Sharika T R, SNGCE

• All of the standard Java classes included with Java are

stored in a package called java

• The basic language functions are stored in a package

inside of the java package called java.lang

– it is implicitly imported by the compiler for all programs.

72

//Using an import statement:

import java.util.*;

class MyDate extends Date {

//statements , methods,variables

}

//Without the import statement looks like this:

class MyDate extends java.util.Date

{

}
73

Prepared by Sharika T R, SNGCE

//Program A.java

package pack1;

public class A

{ int a=100;

 public int c=20;

 protected int d=50;

 public void msg()

 { System.out.println("Base class A

Hello");

 }

}

//Program B.java

package pack2;

class B{

 public static void main(String args[])

 { pack1.A obj = new pack1.A();

 obj.msg();

 System.out.println(“c="+obj.c);

 //System.out.println("d="+obj.d);

 // cannot access protected of

 //different package i.e. pack1

 //System.out.println("a="+obj.a);

 / /cannot access private of other class

 } }
74

//Program A.java

package pack1;

public class A

{

 int a=100;

 public int c=20;

 protected int d=50;

 public void msg()

 { System.out.println("Base class A

Hello"); }

}

//Program B.java

package pack2;

import pack1.*;

class B{

 public static void main(String args[])

 { A obj = new A();

 obj.msg();

 System.out.println(“c="+obj.c);

 //System.out.println("d="+obj.d);

 // cannot access protected of different

package pack1

 //System.out.println("a="+obj.a);/

 //cannot access private of other class

} }

75

Prepared by Sharika T R, SNGCE

• Using import package.classname statement to import

class A in pack1 to program file in pack2

76

//Program A.java

package pack1;

public class A

{

 int a=100;

 public int c=20;

 protected int d=50;

 public void msg()

 { System.out.println("Base class A

Hello"); }

}

//Program B.java

package pack2;

import pack1.A;

class B{

 public static void main(String args[])

 { A obj = new A();

 obj.msg();

 System.out.println(“c="+obj.c);

 //System.out.println("d="+obj.d);

 // cannot access protected of different

package pack1

 //System.out.println("a="+obj.a);/

 //cannot access private of other class

} }

77

Prepared by Sharika T R, SNGCE

78

Built-in Packages

79

Prepared by Sharika T R, SNGCE

Java Foundation Packages

• Java provides a large number of classes grouped into

different packages based on their functionality.

80

• The six foundation Java packages are:

– java.lang

• Contains classes for primitive types, strings, math functions, threads, and exception

– java.util

• Contains classes such as vectors, hash tables, date etc.

– java.io

• Stream classes for I/O

– java.awt

• Classes for implementing GUI – windows, buttons, menus etc.

– java.net

• Classes for networking

– java.applet

• Classes for creating and implementing applets 81

Prepared by Sharika T R, SNGCE

Packages and Interfaces –

Defining Package,

CLASSPATH,

Access Protection,

Importing Packages,

Interfaces.

82

Interfaces

• Interface can be created using the keyword interface.

• Interfaces are syntactically similar to classes.

• Interface does not have instance variables.

• The methods in interface are declared without any body.

– Interface never implements methods.

• Any number of classes can implement an interface.

• One class can implement any number of interfaces.

– This helps to achieve multiple inheritance.

83

Prepared by Sharika T R, SNGCE

• To implement an interface,

– a class must create and define the complete set of methods

that are declared by the interface.

• Each class can have its own implementation of the

methods.

• By providing the interface keyword, Java allows you to

fully utilize the “one interface, multiple methods” aspect of
polymorphism.

• Interfaces support dynamic method resolution at run time.

84

• General form of an interface:

accessspecifier interface name {

 return-type method-name1(parameter-list);

 return-type method-name2(parameter-list);

 type final-varname1 = value;

 type final-varname2 = value;

 // ...

 return-type method-nameN(parameter-list);

 type final-varnameN = value;

}
85

Prepared by Sharika T R, SNGCE

• When no access specifier is included, then it has default access.

– the interface is only available to other members of the package in which it

is declared.

• The methods are declared have no bodies. They end with a

semicolon after the parameter list.

• They are abstract methods.

• Each class that includes an interface must implement all of the

methods.

• Variables re implicitly final and static, meaning they cannot be

changed by the implementing class.

– They must also be initialized.

• All methods and variables are implicitly public
86

interface Callback {

 void show(int param);

}

87

Prepared by Sharika T R, SNGCE

The relationship between classes and interfaces

88

89

Prepared by Sharika T R, SNGCE

Extending Interfaces

• The extends keyword is used to extend an interface, and

the child interface inherits the methods of the parent

interface.

90

• The Hockey interface has

four methods, but it inherits

two from Sports; thus, a class

that implements Hockey

needs to implement all six

methods.

• Similarly, a class that

implements Football needs to

define the three methods

from Football and the two

methods from Sports.

91

Prepared by Sharika T R, SNGCE

Variables in Interfaces

• When we include an interface in a class (using

“implement” the interface), all of those variable names in

the interface will be in scope as constants.

– That is they are imported to class name space as final

variables.

92

93

Prepared by Sharika T R, SNGCE

Partial Implementations

• If a class includes an interface but does not fully implement the

methods required by that interface, then that class must be

declared as abstract.

interface Callback {

 void show(int param); }

abstract class Incomplete implements Callback {

 int a, b;

 void display()

 { System.out.println(“display”);

 }}

• Here the class Incomplete does not implement show() in the

• interface Callback. So the class Incomplete is abstract class
94

Nested Interfaces

• An interface can be declared a member of a class or

another interface. Such an interface is called a member

interface or a nested interface.

• A nested interface can be declared as public, private, or

protected.

• The top level interface must either be declared as public

or use the default access level.

• If we want to use a nested interface outside of its

enclosing scope, the nested interface must be qualified by

the name of the class or interface of which it is a member.
95

Prepared by Sharika T R, SNGCE

96

