
CST281

Object Oriented Programming

MODULE 2

Object Oriented Programming in Java

Prepared by Sharika T R, SNGCE

2

Syllabus

Primitive Data types - Integers, Floating Point Types, Characters, Boolean.

Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.

Operators - Arithmetic Operators, Bitwise Operators, Relational Operators,

Boolean Logical Operators, Assignment Operator, Conditional (Ternary)

Operator, Operator Precedence.

Control Statements - Selection Statements, Iteration Statements and Jump

Statements.

Object Oriented Programming in Java - Class Fundamentals, Declaring

Objects, Object Reference, Introduction to Methods, Constructors, this

Keyword, Method Overloading, Using Objects as Parameters, Returning

Objects, Recursion, Access Control, Static Members, Final Variables, Inner

Classes, Command-Line Arguments, Variable Length Arguments.

OBJECT ORIENTED PROGRAMMING IN

JAVA - CLASS FUNDAMENTALS,

DECLARING OBJECTS, OBJECT

REFERENCE, INTRODUCTION TO

Methods, Constructors, this Keyword, Method Overloading, Using Objects as Parameters,

Returning Objects, Recursion, Access Control, Static Members, Final Variables, Inner

Classes, Command-Line Arguments, Variable Length Arguments.

3

Prepared by Sharika T R, SNGCE

Class Fundamentals

• The class is the core of Java.

– The class forms the basis for object-oriented programming in

Java.

• A class is a "blueprint" for creating objects

• A class is a template for an object.

– An object is an instance of a class.

• A class defines a new type of data.

• A class creates a logical framework that defines the

relationship between its members.

4

Example

5

Prepared by Sharika T R, SNGCE

• A class is declared using the keyword class

• The data or variables, defined within a class are called

instance variables.

– because each instance of the class (that is, each object of the

class) contains its own copy of these variables.

– the data for each object is separate and unique.

• Functions inside class are called methods.

• The methods and variables defined within a class are

called members of the class.

 6

The General Form of a Class

7

Prepared by Sharika T R, SNGCE

A Simple Class

8

9

Prepared by Sharika T R, SNGCE

Declaring Objects

• When we create a class, we are creating a new data type.

– We can use this type to declare objects of that type.

• Obtaining objects of a class is a two-step process.

– First, we must declare a variable of the class type.

• This variable does not define an object.

• It is simply a variable that can refer to an object.

– Second, we must acquire an actual, physical copy of the object

and assign it to that variable (using new operator)

10

Classname objectname ; // declare reference to object

objectname = new Classname(); // allocate an object

• We can write this in a single statement

Classname objectname = new Classname();

11

Prepared by Sharika T R, SNGCE

• This line declares mybox as a

reference to an object of type Box.

• Here mybox contains the value null,

which indicates that it does not yet point

to an actual object

mybox = new Box();

• This line allocates an actual object and

assigns a reference to it to mybox.

• mybox holds the memory address of the

actual Box object.

12

class Box

{

double Width;

double Height;

double Depth;

}

Box mybox;

13

Prepared by Sharika T R, SNGCE

• The class name followed by parentheses specifies the

constructor for the class.

Box mybox=new Box();

• Here Box is the class. Box()is the constructor.

• A constructor defines what occurs when an object of a

class is created.

14

Assigning Object Reference Variables

• Object reference variables act differently when an

assignment takes place

• E.g.

Box b1 = new Box();

Box b2 = b1;

• Here b1 and b2 will both refer to the same object.

• Any changes made to the object through b2 will affect

the object which is referred by b1, because they are the

same object.

 15

Prepared by Sharika T R, SNGCE

16

Class vs object

Class

• Template for creating objects

• Logical entity

• Declared using class keyword

• Class does not get any memory

when it is created.

• A class is declared only once

Object

• Instance of class

• Physical entity

• Created using new operator.

• Object gets memory when it is

created using new operator.

• Many objects can be created from

a class

17

Prepared by Sharika T R, SNGCE

Introducing Methods

• Classes usually consist of two things:

– Instance variables

– Methods or functions.

• The general form of a method:

type name(parameter-list)

 {

// body of method

}

• The type specifies the type of data returned by the method.

– any valid type, including class types, void

• The parameter-list or argument list is a sequence of type and identifier pairs

separated by commas.

18

• Methods that have a return type other than void return a

value to the calling routine using the following form of the

return statement:

 return value;

• Method of one class can be invoked by functions of other

classes through objects of former class.

Objectname.method(parameters);

19

Prepared by Sharika T R, SNGCE

20

Example

• Create a class Box with instance variables length, width

and height. Include a method volume to compute the

volume of the box,

• Create another class BoxDemo with main function that

creates an object of class Box named mybox1 and set the

values for instance variables(length, width and height).

Invoke the function volume in Box to compute the volume

of the created object mybox1

21

Prepared by Sharika T R, SNGCE

class Box {

double width;

double length;

double depth;

void volume()

{

System.out.print("Volume is ");

System.out.println(width * length * depth);

}}

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box();

mybox1.width = 10;

mybox1. length = 30;

mybox1.depth = 15;

mybox1.volume();

}

}

22

OUTPUT

Volume is 3000.0

// program using return statement

class Box {

double width;

double height;

double depth;

int volume()

{

return(width * length * depth);

}

}

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box();

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

int v=mybox1.volume();

System.out.println(”Volume=“+v);
} }

23

OUTPUT

Volume is 3000.0

Prepared by Sharika T R, SNGCE

Constructor

• A constructor help to initialize an object(give values)

immediately upon creation.

• Constructor is a special method inside the class.

• Constructor has the same name as the class in which it

resides.

• Once defined, the constructor is automatically called

immediately after the object is created, before the new

operator completes.

 24

• Constructors have no return type, not even void.

– This is because the implicit return type of a class’ constructor is the
class type itself.

• If there is no constructor in a class, compiler automatically creates

a default constructor.

• The constructor name must match the class name, and it cannot

have a return type (like void).

• The constructor is called when the object is created.

• All classes have constructors by default

• If you do not create a class constructor yourself, Java creates one

for you. However, then you are not able to set initial values for

object attributes.
25

Prepared by Sharika T R, SNGCE

• Two types of constructors

– Default constructor – has no arguments

– Parameterized constructor –has arguments(parameters)

26

Default constructor

• Default constructor has no arguments or parameters.

• When we do not explicitly define a constructor for a class, then

Java creates a default constructor for the class.

• The purpose of a default constructor is used to provide the default

values to the object like 0, null, etc., depending on the type.

E.g.

27

Prepared by Sharika T R, SNGCE

class Box

{

int width ,length,height;

Box()

{

width=10;

length=10;

height=10;

}}

• The following statement

creates an object of class Box.

Box mybox1 = new Box();

• Here new Box() is calling the

Box() constructor.

28

class Box {

int length;

int height;

int width;

Box()

{System.out.println(“Constructor");
width = 10;

length = 10;

height= 10;}

int volume()

{

return width * length * height;

}

}

class BoxDemo {

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

int vol;

vol = mybox1.volume();

System.out.println("Volume is " + vol);

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

29

OUTPUT

Constructor

Constructor

Volume is 1000

Volume is 1000

Prepared by Sharika T R, SNGCE

Parameterized Constructors

• Constructors with arguments are called parameterized

constructors.

30

class Box

{

double width;

double height;

double length;

Box(double w, double h, double l)

{width = w;

height = h;

length= l;}

double volume()

{

return width * height * length;

}

}

31

Parameterized

Constructor of

class Box

(Box

constructor
has

arguments->

parameters)

Prepared by Sharika T R, SNGCE

class Box

{

double width;

double height;

double length;

Box(double w, double h, double l)

{width = w;

height = h;

length = l;}

double volume()

{

return width * height * length;

}

}

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 2);

double vol;

vol = mybox1.volume();

System.out.println("Volume is " + vol);

vol = mybox2.volume();

System.out.println("Volume is " + vol);

 }

}

32

OUTPUT

Volume is 3000

Volume is 36

Box mybox1 = new Box(10, 20, 15);

• Here the values 10, 20, and 15 are passed to the Box()

constructor when new creates the object mybox1.

• The parameterized constructor is

Box(double w, double h, double l)

{

width = w;

height = h;

length = l;

}

• Thus, value of mybox1 object’s width, height, and depth will be set
as 10, 20, and 15 respectively.

33

Prepared by Sharika T R, SNGCE

34

The this Keyword

• The this keyword can be used inside any method to refer

to the current object.

• this is always a reference to the object on which the

method was invoked.

• this can be used to refer current class instance variable.

• this can be used to invoke current class method

(implicitly)

• this() can be used to invoke current class constructor.

• this can be passed as an argument in the method call.

• this can be passed as argument in the constructor call. 35

Prepared by Sharika T R, SNGCE

Box(double w, double h, double l)

 {

this.width = w;

this.height = h;

this.length = l;

}

Here this will always refer to the object invoking the method

36

class Box

{

double width;

double length;

double height;

Box(double w, double l, double h)

{

this.width = w;

this.length = l;

this.height = h;

}

}

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 2);

}

}

37

Here in statement

Box mybox1 = new Box(10, 20, 15);

mybox1 object is created by calling parameterized constructor.

Box(double w, double l, double d)

Here this inside constructor refers to object mybox1.

Next when mybox2 object is created, this refers to object

mybox2.

Prepared by Sharika T R, SNGCE

Instance variable hiding-using this

• We can have local variables, including formal parameters to

methods, which has the same name of the class’ instance
variables(attributes).

• But when a local variable has the same name as an instance

variable, the local variable hides the instance variable.

– this helps to solve this. Use this. along with instance variables.

38

39

Prepared by Sharika T R, SNGCE

40

41

•Object Oriented Programming in Java

 1. Class Fundamentals, Declaring Objects, Object

Reference, Introduction to Methods,

 2. Constructors, this Keyword,

3. Method Overloading, Using Objects as Parameters, Returning

Objects, Recursion,

4. Access Control, Static Members, Final Variables, Inner

Classes, Command-Line Arguments, Variable Length

Arguments.

Prepared by Sharika T R, SNGCE

Method Overloading

• It is possible to define two or more methods with same name

within the same class, but their parameter declarations should be

different.

– This is called method overloading.

– This is a form of polymorphism (many forms)

• Overloaded methods must differ in the type and/or number of their

parameters. (return types is not significant.)

• When an overloaded method is invoked, Java uses the type

and/or number of arguments to determine which version of the

overloaded method to actually call.

42

// Demonstrate method overloading.

class Over

{

void test()

{

 System.out.println(“Empty");
}

void test(int a) {

 System.out.println("a: " + a);

}

void test(int a, int b) {

 System.out.println(“a=”+a);
 System.out.println(“b=”+b);
 }

}

class Sample {

public static void main(String args[])

{

Over ob = new Over();

ob.test();

ob.test(10);

ob.test(2, 5);

}

}

43

OUTPUT

Empty

a=10

a=2

a=5

Prepared by Sharika T R, SNGCE

• In the example, test() is overloaded three times.

– The first version test() takes no parameters,

– the second test(int a)takes one integer parameter

– the third test(int a,int b) takes two integer parameters.

• When an overloaded method is called, Java looks for a

match between the arguments used to call the method

and the method’s parameters

• This match need not always be exact.

– In some cases, Java’s automatic type conversions can play a
role in overload resolution.

44

Overloading -through automatic type conversions

class Over{

void test() {

System.out.println(“Empty");
}

void test(double a)

 {

System.out.println(“a: " + a);
}

}

class Sample {

public static void main(String

args[])

{

Over ob = new Over();

ob.test();

ob.test(10);

ob.test(2.5);

}

}

 45

OUTPUT

Empty

a=10

a=2.5

Prepared by Sharika T R, SNGCE

• In this example when test() is called with an integer

argument inside .

– Overload, no matching method is found with int as argument.

• However, Java can automatically convert an integer into a

double, and this conversion can be used to resolve the

call.

– Therefore, when test(int) is not found, Java elevates int to

double and then calls test(double).

46

Overloading Constructors

• Constructors can be overloaded. Because a class can

have any number of constructors

– one default constructor, many parameterized constructors

class A

{

A() { //statements}

A(int a) { //statements}

A(int a,float b) { //statements}

}

47

Prepared by Sharika T R, SNGCE

class Box

{

double width;

double length;

double height;

Box(double w, double l, double h)

{

width = w;

length = l;

height = h;

}

Box()

{

width = 0;

length =0;

height =0;

} }

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box(3, 6, 2);

System.out.println("mybox1");

System.out.println(mybox1 .width + " “
+mybox1 .length + " "+ mybox1 .height);

System.out.println("mybox2");

System.out.println(mybox2.width + " “ +
mybox2.length + " " + mybox2 .height);

} }

48

OUTPUT

mybox1

0.0 0.0 0.0

mybox2

3.0 6.0 2.0

class Box

{

double width

double length;

double height;

Box(double w, double l, double h)

{

this.width = w;

this.length = l;

this.height = h;

}

}

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box(); //ERROR

Box mybox2 = new Box(3, 6, 2);

}

}

49

ERROR

Here following statement tries to create object mybox1 of class

Box ,

Box mybox1 = new Box();

This should call default constructor Box() in class Box.

But Box class has constructor but no default constructor is there.

So ERROR occurs

Prepared by Sharika T R, SNGCE

class Box

{

double width

double length;

double height;

}

class BoxDemo {

public static void main(String

args[]) {

Box mybox1 = new Box();

}

}

50

NO ERROR in this code

The following statement creates object of Box class

mybox1

Box mybox1 = new Box();

Since no constructors are not there,

Java provides the default constructor.

Argument Passing

• call-by-value.

– This approach copies the value of an argument into the formal

parameter of the subroutine.

– Therefore, changes made to the parameter of the subroutine

have no effect on the argument.

• call-by-reference.

– a reference to an argument (not the value of the argument) is

passed to the parameter.

– Inside the subroutine, this reference is used to access the

actual argument specified in the call.

– This means that changes made to the parameter will affect the

argument used to call the subroutine
51

Prepared by Sharika T R, SNGCE

Using Objects as Parameters

• We can pass objects as arguments(parameters) to

function(method).

• Objects are passed by reference(call by reference).

52

 class Test {

 int a, b;

 Test(int i, int j)

{

a = i;

b = j;

}

boolean equals(Test o)

 {

if(o.a == a && o.b == b)

 return true;

else return false;

}

}

class PassOb {

public static void main(String args[])

{

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println(ob1.equals(ob2));

System.out.println(ob1.equals(ob3));

}}

53

OUTPUT

true

false

Prepared by Sharika T R, SNGCE

class Test {

int a, b;

Test(int i, int j)

{

a = i;

b = j;

}

boolean equals(Test o)

 {

if(o.a == this.a && o.b == this.b)

 return true;

else return false;

}}

class PassOb {

public static void main(String args[])

{

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println(ob1.equals(ob2));

System.out.println(ob1.equals(ob3));

}}

54

OUTPUT

true

false

Object to initialize another object

class Box

{

double width

double length;

double height;

Box(double w, double l, double h)

{

width = w;

length = l;

height = h;

}

}

class BoxDemo {

public static void main(String args[])

{

Box b1 = new Box(10, 20, 15);

Box b2 = new Box(b1);

}

}

55

Here object b2 is a clone of b1.

The object b2 is initialized using

initial values of object b1

Prepared by Sharika T R, SNGCE

Passing arguments to function

• Primitive types(int,char,double etc.) are passed by value.

• Objects are passed by reference.

56

class Test {

int a;

Test(int i)

{

a = i;

}

void calc(Test o)

{

o.a *= 2;

}

void calc(int a)

{

a*=2;

}

}

class Obcall {

public static void main(String args[])

{

Test ob = new Test(15);

System.out.println("Object parameter");

System.out.println("Before call: " + ob.a);

ob.calc(ob); // //Call by reference

System.out.println("After call: " + ob.a);

int a=15;

System.out.println("Integer parameter");

System.out.println("Before call: " + a);

ob.calc(a); //Call by value

System.out.println("After call: " + a);

} }

57

OUTPUT

Object parameter

Before call: 15

After call: 30

Integer parameter

Before call: 15

After call: 15

Prepared by Sharika T R, SNGCE

Returning objects

• A method can return any type of data,

– Primitive data (int ,float, char, double etc.)

– class types(objects) that you create.

– etc.

58

// Returning an object.

class Test {

 int a;

 Test(int i)

 {

 a = i;

 }

Test increase()

{

Test temp = new Test(a+10);

return temp;

}

}

class RetOb {

public static void main(String args[]) {

Test ob1 = new Test(2);

Test ob2;

ob2 = ob1.increase();

System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.increase ();

System.out.println(“increase ob2.a: ”
+ob2.a);

 }

 }

59

OUTPUT

ob1.a: 2

ob2.a: 12

increase ob2.a: 22

Prepared by Sharika T R, SNGCE

Recursion

• Recursion is the process of defining something in terms

of itself.

• A method that calls itself is called recursive function.

60

// A simple example of recursion.

class Factorial {

int fact(int n)

 {

int result;

if(n==1)

 return 1;

result = n* fact(n-1) ;

 return result;

}

}

class Recursion {

public static void main(String

args[]) {

Factorial f = new Factorial();

int s= f.fact(5)

System.out.println("Factorial of 5

is " + s);

}

}

61

Prepared by Sharika T R, SNGCE

62

63

•Object Oriented Programming in Java

 1. Class Fundamentals, Declaring Objects, Object

Reference, Introduction to Methods,

 2. Constructors, this Keyword,

 3. Method Overloading, Using Objects as Parameters,

Returning Objects, Recursion,

4. Access Control, Static Members, Final Variables, Inner

Classes, Command-Line Arguments, Variable Length

Arguments.

Prepared by Sharika T R, SNGCE

Access Control

• Through encapsulation, we can control what parts of a

program can access the members of a class.

– By controlling access, you can prevent misuse.

• How a member can be accessed is determined by the

access specifier that modifies its declaration

• Java’s access specifiers are
public

private

protected

default

64

• When a member of a class is modified by the public

specifier, then that member can be accessed by any other

code. (ACCESSIBLE TO ALL)

– public int i;

• When a member of a class is specified as private, then

that member can only be accessed by any members of

the same class.

– private int a;

65

Prepared by Sharika T R, SNGCE

• When a member of a class is specified as protected , then

that member can be accessed within the package and by

any of its subclasses.

 protected char c;

• When no access specifier is there, then its access

specifier is default.
– It can be accessed within its own package, but cannot be

accessed outside of its package

int c;

66

class A{

public int i;

private double j;

protected char c;

float f; //default access

public int myMethod(int a, char b) //public method

{ //..

}

}

67

Prepared by Sharika T R, SNGCE

68

ALL
SAME PACKAGE

,

ANY SUBCLASS

SAME PACKAGE, SAME CLASS

class Test

{

int a; // default access

public int b; // public access

private int c; // private access

void setc(int i) //setter

{

c = i;

}

int getc() //getter

{

return c;

} }

class AccessTest {

public static void main(String args[]) {

Test ob = new Test();

ob.a = 10;

ob.b = 20;

// ob.c = 100; // Error! // PRIVATE

// You must access private variable c

//through its methods

ob.setc(100); // OK

System.out.println("a=“+ ob.a);

System.out.println("b="ob.b”);
System.out.println(“c= " + ob.getc());

}

}

69

Prepared by Sharika T R, SNGCE

static Members

• Usually we access the member of another class using

object.

• Syntax is: objectname.member;

• If we want to access a member of another class without

using object, then we have to make it a make it a static

member.

– Static class member is independent of any object of that class.

We can make a member static by preceding the member

declaration with the keyword static.

static datatype member;

70

• When a member is declared static, it can be accessed

before any objects of its class are created, and without

reference to any object.

• Static member can be accessed using

 classname.member;

71

Prepared by Sharika T R, SNGCE

• The most common example of a static member is main

function.

– main() is declared as static because it must be called before

any objects is created.

• Instance variables declared as static are global variables.

• When objects of its class are declared, separate copy of a

static variable is NOT made.

• All instances(objects) of the class share the same static

variable.

72

• Methods declared as static(static methods) have several

restrictions:

– static methods can only call other static methods.

– static methods must only access static data.

– static methods cannot refer to this or super.

• If we need to do computation to initialize your static

variables, we can declare a static block that gets

executed exactly once, when the class is first loaded.

73

Prepared by Sharika T R, SNGCE

• // Demonstrate static variables, methods, and blocks.

class UseStatic {

static int a = 3;

static int b;

static void show(int x) {

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

static {

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String args[])

{show(42);
}

}

74

OUTPUT

Static block initialized.

x = 42

a = 3

b = 12

Working of e.g. code

• As soon as the UseStatic class is loaded, all of the static

statements are run.

– First, static member a is set to 3,

– then the static block executes, which prints a message and

then initializes b to a * 4 or 12.

– Then main() is called, which calls show(), passing 42 to x.

– The three println() statements in show refer to the two static

variables a and b, as well as to the local variable x.

75

Prepared by Sharika T R, SNGCE

• if we want to call a static method from outside its class,

we can do so using the following general form:

classname.method();

• Here classname is the name of the class in which the

static method is declared.

76

Non-static method invocation

class Demo {

int a = 42;

int b = 99;

void callme()

{

System.out.println("a = " + a);

}

}

class Sample {

public static void main(String args[]) {

Demo dm=new Demo ();

dm.callme();

System.out.println("b = " + dm.b);

} }

77

Prepared by Sharika T R, SNGCE

static method invocation

class StaticDemo {

static int a = 42;

static int b = 99;

static void callme()

{

System.out.println("a = " + a);

}

}

class StaticByName {

public static void main(String args[])

{

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

} }

78

Nonnstatic members Static members

class Demo {

int a = 42;

int b=5;

void callme()

{

System.out.println("a = " + a);

}

}

class Sample {

public static void main(String args[]) {

Demo dm=new Demo();

dm.callme();

System.out.println("b = " + dm.b);

} }

class StaticDemo {

int a = 42;

static int b = 5;

static void callme()

{

System.out.println("a = " + a);

}

}

class StaticByName {

public static void main(String args[])

{

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

} }

79

Prepared by Sharika T R, SNGCE

class Sample

{

static int a = 0;

int b;

Sample()

{

 b=0;

}

void callme()

{

a=a+2;

b=b+2;

System.out.println("static after +2 a = " + a);

System.out.println("b after +2 = " + b);

}

}

class Samplestat {

public static void main(String args[])

{

Sample ob1=new Sample();

System.out.println("ob1");

ob1.callme();

Sample ob2=new Sample();

System.out.println("ob2");

ob2.callme();

} }

80

OUTPUT

ob1

static after +2 a = 2

b after +2 = 2

ob2

static after +2 a = 4

b after +2 = 2

81

Prepared by Sharika T R, SNGCE

Final Variables

• A variable can be declared as final by prefixing final keyword.

• The contents of final variables cannot be modified.

• We must initialize a final variable when it is declared.

E.g.

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

• It is a convention to choose uppercase identifiers (CAPITAL

LETTERS) for final variables. E.g. TOTAL

• We can use final variables as if they were constants, without fear

that a value has been changed.

• Variables declared as final do not occupy memory on a per-

instance basis.
82

Variables In Java

83

Prepared by Sharika T R, SNGCE

Nested Classes

• It is possible to define a class within another class; such

classes are known as nested classes.

• The scope of a nested class is bounded by the scope of

its enclosing class(outer).

– Thus, if class B is defined within class A, then B does not exist

independently of A.

• A nested class has access to the members, including private

members, of the enclosing(outer) class.

• The enclosing class does not have access to the members of the

nested class.

84

• A nested class, that is declared directly within its

enclosing class scope, is a member of its enclosing class.
class Outer

{

//variables and methods

 class Inner

 {

//variables and methods

 }

}

• There are two types of nested classes: static and non-

static.
85

Prepared by Sharika T R, SNGCE

• Static nested class
– A static nested class is one that has the static modifier applied.

– It must access the members of its enclosing class through an

object.

– It cannot refer to members of its enclosing class directly.

86

• // Demonstrate a STATIC inner class.

class Outer

 {

 int outer_x = 100;

 void test() {
Nested nested= new Nested ();

nested.display();

 }

 static class Nested { //static nested class

 void display() {

 Outer obj = new Outer();

 System.out.println("display: outer_x = " + obj.outer_x);

 }

 }

}

class NestedClassDemo {

 public static void main(String args[]) {

 Outer outer = new Outer();

 outer.test();

} }
87

OUTPUT

display: outer_x = 100

Prepared by Sharika T R, SNGCE

Inner Class

• Non static class

– A non-static nested class is called inner class.

– An inner class has access to all of the variables and methods of

its outer class.

– It may refer to members of its enclosing class directly in the

same way that other non-static members of the outer class do.

88

// Demonstrate a NONSTATIC inner class.

class Outer

 {

 int outer_x = 100;

 void test() {
Inner inner = new Inner();

inner.display();

 }

 class Inner {

 void display() {

 System.out.println("display: outer_x = " + outer_x);

 }

 }

}

class InnerClassDemo {

 public static void main(String args[]) {

 Outer outer = new Outer();

 outer.test();

} }

89

OUTPUT

display: outer_x = 100

Prepared by Sharika T R, SNGCE

• In the program, an inner class named Inner is defined within the

scope of class Outer.

• Therefore, any code in class Inner can directly access the variable

outer_x in Outer class.

• An instance method named display() is defined inside Inner.

– This method displays outer_x on the standard output stream.

• The main() method of InnerClassDemo creates an instance of

class Outer and invokes its test() method.

• That method creates an instance of class Inner and the display()

method is called.

 90

• An instance(object) of Inner can be created only within the

scope of class Outer.

• We can create an instance of Inner class outside of Outer

class by qualifying its name with Outer classname, as in

 Outer.Inner ob=outerobject.new Inner();

• An inner class can access all of the members of its

enclosing class, but the reverse is not true.

• Members of the inner class are known only within the

scope of the inner class and may not be used by the outer

class.

91

Prepared by Sharika T R, SNGCE

• We can define a nested class within the block defined by

a method or even within the body of a for loop

92

// Define an inner class within a for loop.

class Outer {

 int outer_x = 100;

 void test() {

 for(int i=0; i<5; i++)

 { class Inner {

 void display() {

 System.out.println("display: outer_x = " + outer_x);

 }

 }

 Inner inner = new Inner();

 inner.display();

 }

 } }

class InnerClassDemo {

 public static void main(String args[]) {

 Outer outer = new Outer();

 outer.test(); } }
93

OUTPUT

display: outer_x = 100

display: outer_x = 100

display: outer_x = 100

display: outer_x = 100

display: outer_x = 100

Prepared by Sharika T R, SNGCE

Variables In Java

94

Command-Line Arguments

• If we want to pass information into a program when you

run it, then you can do this by passing command-line

arguments to main().

• A command-line argument is the information that follows

program’s name on the command line when it is
executed.

• Command-line arguments are stored as strings in a String

array passed to the args parameter of main().

– The first command-line argument is stored at args[0]

– the second at args[1]

– so on.
95

Prepared by Sharika T R, SNGCE

// Display all command-line arguments.

class CommandLine {

 public static void main(String args[]) {

 for(int i=0; i<args.length; i++)

 System.out.println("args[" + i + "]: " + args[i]);

 }

}

• Compile this using javac and execute this program as:-

 java CommandLine this is a test 100 -1

96

Output

args[0]: this

args[1]: is

args[2]: a

args[3]: test

args[4]: 100

args[5]: -1

Variable length arguments

• In Java methods can take a variable number of arguments.

– This feature is called varargs or variable-length arguments.

• A method that takes a variable number of arguments is called a

variable-arity method, or simply a varargs method.

• E.g. A method that opens an Internet connection might take a

user name, password, filename, protocol, and so on, but supply

defaults if some of this information is not provided. Here it is better

to pass only the arguments to which the defaults did not apply.

• E.g. printf() method can have any number of arguments.

97

Prepared by Sharika T R, SNGCE

Handling variable length arguments

• If the maximum number of arguments is small and known,

then we can create overloaded versions of the method,

one for each way the method could be called.

• If the maximum number of potential arguments is larger,

or unknowable, then the arguments can be put into an

array, and then the array can be passed to the method.

98

class PassArray {

 static void test(int v[])

 {

System.out.print("Number of args: " +

v.length + " Contents: ");

for(int x : v)

 System.out.print(x + " ");

System.out.println();

}

 public static void main(String args[])

 {

int n1[] = { 10 };

int n2[] = { 1, 2, 3 };

int n3[] = { };

test(n1); // 1 arg

test(n2); // 3 args

test(n3); // no args

}

}

• This old method requires that

these arguments be manually

packaged into an array prior to

calling the function test().

99

OUTPUT

Number of args: 1 Contents: 10

Number of args: 3 Contents: 1 2 3

Number of args: 0 Contents:s

Prepared by Sharika T R, SNGCE

• A variable-length argument is specified by three periods

(...).

• E.g.

static void test(int ... v) { //statemenst }

• This syntax tells the compiler that test() can be called

with zero or more arguments.

100

class PassArray {

 static void test(int ...v)

 {

 System.out.print("Number of args: " + v.length + " Contents: ");

 for(int x : v)

 System.out.print(x + " ");

 System.out.println();

 }

 public static void main(String args[])

 {

 test(10); // 1 arg

 test(1,2,3); // 3 args

 test(); // no args

 }

}

101

OUTPUT

Number of args: 1 Contents: 10

Number of args: 3 Contents: 1 2 3

Number of args: 0 Contents:

Prepared by Sharika T R, SNGCE

• A method can have “normal” parameters along with a
variable-length parameter.

• However, the variable-length parameter must be the last

parameter declared by the method.

• E.g:

 int test(int a, int b, double c, int ... vals) { //statements }

VALID

• E.g.

int test(int a, int b, double c, int ... vals, boolean stopFlag) {

// ERROR!

102

MODULE 2 ENDS

103

Prepared by Sharika T R, SNGCE

