Prepared by Sharika T R, SNGCE

CST281

Object Oriented Programming

MODULE 2
Object Oriented Programming in Java

»Primitive Data types - Integers, Floating Point Types, Characters, Boolean.
Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.
» Operators - Arithmetic Operators, Bitwise Operators, Relational Operators,

Boolean Logical Operators, Assignment Operator, Conditional (Ternary)
Operator, Operator Precedence.

» Control Statements - Selection Statements, Iteration Statements and Jump
Statements.

» Object Oriented Programming in Java - Class Fundamentals, Declaring
Objects, Object Reference, Introduction to Methods, Constructors, this
Keyword, Method Overloading, Using Objects as Parameters, Returning
Objects, Recursion, Access Control, Static Members, Final Variables, Inner
Classes, Command-Line Arguments, Variable Length Arguments.

Prepared by Sharika T R, SNGCE

Methods, Constructors, this Keyword, Method Overloading, Using Objects as Parameters,
Returning Objects, Recursion, Access Control, Static Members, Final Variables, Inner
Classes, Command-Line Arguments, Variable Length Arguments.

OBJECT ORIENTED PROGRAMMING IN

JAVA

The class is the core of Java.

Class Fundamentals

— The class forms the basis for object-oriented programming in

Java.

A class is a "blueprint" for creating objects

A class is a template for an object.
— An object is an instance of a class.

A class defines a new type of data.

A class creates a logical framework that defines the

relationship between its members.

Prepared by Sharika T R, SNGCE

Rollno :
Student properties

Name (instance variables)
la
(class) read() behavi
= enaviour
write() (methods)

12
Smith

object object

» A class is declared using the keyword class

The data or variables, defined within a class are called
instance variables.

— because each instance of the class (that is, each object of the
class) contains its own copy of these variables.

— the data for each object is separate and unique.
Functions inside class are called methods.

The methods and variables defined within a class are
called members of the class.

Prepared by Sharika T R, SNGCE

The General Form of a Class

* Ageneral form of a class definition is
class classname
{ -
tipe instance-variablel ; (Fi):;p;:fj
hpe instance-variableN; variables)
hpe methodnamel (parameter-lisi) > Behaviour or Member
! Method or <« S0f
function | class
// body of method f'
} /
hpe methodnamelN(parameter-list) ——— Behaviouror ;
Method or
{ // body of method function
} 7
}
A Simple Class
class Box
{
double width;
. Properties - Memberof
double height; (instance variables) class
doubledepth;

}

Prepared by Sharika T R, SNGCE

class Box
double width;
doubleheight;

L)

] Froperties —
double depth; (instance variables) —__
“—_ Members
] " ofclass
- ..-’/
void volume() _ -
—> Behaviour or g
{ Method or &
Function

//statements
} 9

Declaring Objects

 When we create a class, we are creating a new data type.
— We can use this type to declare objects of that type.

» Obtaining objects of a class is a two-step process.

— First, we must declare a variable of the class type.
» This variable does not define an object.
* Itis simply a variable that can refer to an object.

— Second, we must acquire an actual, physical copy of the object
and assign it to that variable (using new operator)

10

Prepared by Sharika T R, SNGCE

Classname objectname ; // declare reference to object
objectname = new Classname(); // allocate an object

* We can write this in a single statement
Classname objectname = new Classname();

11

» This line declares mybox as a

?Iass Box reference to an object of type Box.
double Width; | * {8 T R et does not vet point
double Height; to an actual object
double Depth; mybox = new Box();

} » This line allocates an actual object and

Box mybox; assigns a reference to it to mybox.

* mybox holds the memory address of the

actual Box object.

Prepared by Sharika T R, SNGCE

class Box
{double Width;
double Height;
double Depth;
}
Statement Effect
Declaring an object - ——
T Box mybox; null
mybox
mybox = new Box(); —t— | Width
mybox Height
Depth
Box object

» The class name followed by parentheses specifies the
constructor for the class.

Box mybox=new Box();
* Here Box is the class. Box()is the constructor.

A constructor defines what occurs when an object of a
class is created.

Prepared by Sharika T R, SNGCE

Assigning Object Reference Variables

» Object reference variables act differently when an

assignment takes place
LIE-\ Width

b E . g . Height Box object
Box bl = new Box(); LZZ/ —
Box b2 =bl;

* Here b1 and b2 will both refer to the same object.

» Any changes made to the object through b2 will affect
the object which is referred by b1, because they are the
same object.

15

ME\ Width
» e Box objec
Box bl =newBox(), — —~ . i::: .
. /

Box b2 =bl; e
vf‘llvf‘. e

b2
bl = null;

h — MD Width

Height Box object
Depth

* Here at the end bl has been set to null, but b2 still points
to the original object.

Prepared by Sharika T R, SNGCE

Class

Template for creating objects
Logical entity
Declared using class keyword

Class does not get any memory
when it is created.

A class is declared only once

Class vs object

Object

Instance of class
Physical entity
Created using new operator.

Object gets memory when it is
created using new operator.

Many objects can be created from
a class

17

» Classes usually consist of two things:

— Instance variables
— Methods or functions.
The general form of a method:

type name(parameter-list)

{

// body of method

}

Introducing Methods

» The type specifies the type of data returned by the method.
— any valid type, including class types, void
» The parameter-list or argument list is a sequence of type and identifier pairs

separated by commas.

18

Prepared by Sharika T R, SNGCE

* Methods that have a return type other than void return a
value to the calling routine using the following form of the
return statement:

return value;

» Method of one class can be invoked by functions of other
classes through objects of former class.

Objectname.method (parameters);

19

/[EXAMPLE (
class Box { <_(.. >
double width; P y —
) roperties
double length: (instance variables)
double depth;
void volume() -T— Behaviour or
{ Method or

System_out.print("Volume is "); Function

System.out.println(width * height * depth);
)

}

class BoxDemo {

public static void main(String args[]) {

5 Behaviour or
Box mybox1 = new Box(); Method or
mybox1.width=10; Function

MAIN FUNCTION
mybox1. length= 30;

mybox1.depth=15;

mybox1.volume(): BoxDemo class
b

20

Prepared by Sharika T R, SNGCE

 Create a class Box with instance variables length, width
and height. Include a method volume to compute the
volume of the box,

» Create another class BoxDemo with main function that
creates an object of class Box named mybox1 and set the
values for instance variables(length, width and height).
Invoke the function volume in Box to compute the volume
of the created object mybox1

class Bo

dou .
double length;
double depth;
void volume()
{
System.out.print("Volume is ");

}S}ystem.out.println(width * length * depth); \O/Olfl.:-r:lej.ll-s 3000.0

class BoxDemo {

public static void main(String args[]) {
Box mybox1 = new Box();
mybox1.width = 10;

mybox1. length = 30;

mybox1.depth = 15;
mybox1.volume();

} 22

1

Prepared by Sharika T R, SNGCE

/l progra
class Box
doub
double height;
double depth;

int volume()

{
return(width * length * depth); OUTPUT
} Volume is 3000.0

}

class BoxDemo {

public static void main(String argsl[]) {
Box mybox1 = new Box();
mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

int v=mybox1.volume();
System.out.printin(*Volume=“+v);

1} 23

A constructor help to initialize an object(give values)
immediately upon creation.

» Constructoris a special method inside the class.

» Constructor has the same name as the class in which it
resides.

* Once defined, the constructor is automatically called
immediately after the object is created, before the new
operator completes.

Prepared by Sharika T R, SNGCE

Constructors have no return type, not even void.

— This is because the implicit return type of a class’ constructor is the
class type itself.

If there is no constructor in a class, compiler automatically creates
a default constructor.

The constructor name must match the class name, and it cannot
have a return type (like void).

The constructor is called when the object is created.
All classes have constructors by default

If you do not create a class constructor yourself, Java creates one
for you. However, then you are not able to set initial values for
object attributes.

25

» Two types of constructors
— Default constructor — has no arguments
— Parameterized constructor —has arguments(parameters)

Prepared by Sharika T R, SNGCE

Default constructor

» Default constructor has no arguments or parameters.

* When we do not explicitly define a constructor for a class, then
Java creates a default constructor for the class.

» The purpose of a default constructor is used to provide the default

values to the object like 0, null, etc., depending on the type.
E.g. class A

{ J— | Default Constructor of class A |

A
{
/Istatements
¥
} 27

class Box * The following statement
{ creates an object of class Box.
int width ,length,height;
Box() Box mybox1 = new Box();
{
width=10: * Here new Box() is calling the
length=10: Box() constructor.
height=10;
b
28

Prepared by Sharika T R, SNGCE

class Box {
int length;
int height;
int width;
Box()
{System.out.println(“Constructor");
width = 10;
length = 10;
height= 10;}
int volume()
{
return width * length * height;
}

class BoxDemo {

public static void main(String args[])

{

Box mybox1 =new Box();
Box mybox2 =new Box();

int vol;

vol = mybox1.volume();

System.out.println("Volume is " + vol);

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}
}

OUTPUT
Constructor
Constructor
Volume is 1000
Volume is 1000

29

» Constructors with arguments are called parameterized

constructors.

Parameterized Constructors

30

class Box

{

double width;
double height;
double length;

Prepared by Sharika T R, SNGCE

Parameterized
Box(double w, double-h, double I) Constructor of
{width = w; class Box
. ’ (Box

height = h; constructor
length=1;} has .

>
double volume() :;?.::::tlrss)
{
return width * height * length;
}
} 31
class Box class BoxDemo {
{ public static void main(String args[]) {
double width;
double height; Boxmybox1 = new Box(10, 20, 15);
double length; Box mybox2 = new Box(3, 6, 2);
Box(double w, double h, double 1) double vol;
{width = w; vol = mybox]1.volume();
height = h; System.out.println("Volume is " + vol);
length = 1;}

double volume()

{

return width * height * length;

}
}

vol = mybox2.volume();

System.out.println("Volume 1s " + vol);

}
}

OUTPUT
Volume is 3000
Volume is 36

Prepared by Sharika T R, SNGCE

Box mybox1 = new Box(10, 20, 15);

* Here the values 10, 20, and 15 are passed to the Box()
constructor when new creates the object mybox1.

» The parameterized constructor is
Box(double w, double h, double 1)

{

width = w;

height = h;

length = 1;

}

» Thus, value of mybox1 object’s width, height, and depth will be set
as 10, 20, and 15 respectively. 3

S = B

Difference b /w constructor and method
s
’ Constructor ‘ Method ‘

Constructor has same name as the class name. Method can have same as class name and can be different
as per requirement.

Constructor is used to initialize the data members and Method is used to define particular task for execution .
startup tasks.

Constructor is automatically called when an obj is created. We need to call method explicitly.
N

There is no return data type in constructor. We must declare a return data type in methods.

There is always a default constructor provided by compiler. ~ There is no method provided by compiler.

Prepared by Sharika T R, SNGCE

The this Keyword

The this keyword can be used inside any method to refer
to the current object.

this is always a reference to the object on which the
method was invoked.

this can be used to refer current class instance variable.
this can be used to invoke current class method
(implicitly)

» this() can be used to invoke current class constructor.

« this can be passed as an argument in the method call.

* this can be passed as argument in the constructor call. =

Box(double w, double h, double)

{
this.width = w;
this.height = h;
this.length = I;
}

Here this will always refer to the object invoking the method

36

Prepared by Sharika T R, SNGCE

class Box class BoxDemo {

{ public static void main(String args[]) {

double width; Box mybox1 = new Box(10, 20, 15);

double length; Box mybox2 = new Box(3, 6, 2);

double height; }

Box(double w, double 1, double h) }

{ Here in statement

this.width = w; Box mybox1 = new Box(10, 20, 15);

this.length =1, mybox1 object is created by calling parameterized constructor.

this.height = h; Box(double w, double 1, double d)

} Here this inside constructor refers to object myboxl1.

} Next when mybox2 object is created, this refers to object
mybox2.

Instance variable hiding-using this

» We can have local variables, including formal parameters to
methods, which has the same name of the class’ instance
variables(attributes).

 But when a local variable has the same name as an instance
variable, the local variable hides the instance variable.

— this helps to solve this. Use this. along with instance variables.

38

Prepared by Sharika T R, SNGCE

* // Use this to resolve name-space collisions.

class Box

i

double width] NSTANGE
double length; jn_ VARIABLE
double height; -

Box(double width. double height, double length) | CONSTRUCTOR

{

this.width = width;

this.length = length;

this. height; = length;

} } 39

* // Use this to resolve name-space collisions.
class Box

{
double width

double length;
double height f,f‘*" .

Local variable

Box(double Widt‘]-l,_._-double heigflirt, double length)
{
this.width = width;
S INSTANCE
this.length =length. | VARIABLE

this. height = length;—
;¥

40

Prepared by Sharika T R, SNGCE

*Object Oriented Programming in Java
v" 1. Class Fundamentals, Declaring Objects, Object
Reference, Introduction to Methods,
v' 2. Constructors, this Keyword,
3. Method Overloading, Using Objects as Parameters, Returning
Objects, Recursion,

4. Access Control, Static Members, Final Variables, Inner
Classes, Command-Line Arguments, Variable Length
Arguments.

41

Method Overloading

* It is possible to define two or more methods with same name
within the same class, but their parameter declarations should be
different.

— This is called method overloading.
— This is a form of polymorphism (many forms)

* Overloaded methods must differ in the type and/or number of their
parameters. (return types is not significant.)

* When an overloaded method is invoked, Java uses the type
and/or number of arguments to determine which version of the
overloaded method to actually call.

42

Prepared by Sharika T R, SNGCE

// Demonstrate method overloading.

class Over class Sample {

{ public static void main(String args[])

void test() {

{ Over ob = new Over();
System.out.println(“Empty"); ob.test();

} ob.test(10);

void test(int a) { ob.test(2, 5);
System.out.println("a: " + a); }

} } OUTPUT

void test(int a, int b) { Empty
System.out.println(“a="+a); a=10
System.out.println(“b="+b); a=2
} a=5 43

* In the example, test() is overloaded three times.

— The first version test() takes no parameters,

— the second test(int a)takes one integer parameter

— the third test(int a,int b) takes two integer parameters.
* When an overloaded method is called, Java looks for a
match between the arguments used to call the method
and the method’s parameters
This match need not always be exact.

— In some cases, Java’'s automatic type conversions can play a
role in overload resolution.

44

Prepared by Sharika T R, SNGCE

verloading -through automatic type conversions

class Over{ class Sample {
void test() { public static void main(String
System.out.printin(“Empty"); args[])
} {
void test(double a) Over ob = new Over();
{ ob.test();
System.out.println(“a: " + a); ob.test(10); (E)UT:’UT
. mpty

} ob.test(2.5); T
} } a=2.5

}

45

* In this example when test() is called with an integer
argument inside .

— Overload, no matching method is found with int as argument.

* However, Java can automatically convert an integerinto a
double, and this conversion can be used to resolve the
call.

— Therefore, when test(int) is not found, Java elevates int to
double and then calls test(double).

46

Prepared by Sharika T R, SNGCE

Overloading Constructors

» Constructors can be overloaded. Because a class can
have any number of constructors
— one default constructor, many parameterized constructors

class A

{

A() { //statements}

A(nt a) { //statements}

A(nt a,float b) { //statements}

}

47

double width; class BoxDemo {

double length; public static void main(String args[]) {
double height; Box mybox1 = new Box();

Box(double w, double 1, double h) Box mybox2 = new Box(3, 6, 2);

{ System.out.println("mybox1");

width = w; System.out.println(mybox1 .width +" ¢
length =1; +mybox1 .ength + " "+ mybox1 .height);
height = h;

} System.out.println("mybox2");

Box System.out.println(mybox2.width + " “ +

{ 0 r?;/{)’gf:}JT yrnybon.fength (+ 2," + mybox2 .height);
width = 0; 0.0 0.0 0.0 H

length =0; mybox2

height =0; 3.0 6.0 2.0 48

'

Prepared by Sharika T R, SNGCE

class Box

{
double width

double length;

double height;

Box(double w, double 1, double h)
{

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box(); /ERROR
Box mybox2 = new Box(3, 6, 2);

}

}

this.width = w;
this.length =1;
this.height = h;

ERROR

Box ,

Here following statement tries to create object mybox1 of class

Box mybox1 = new Box();

J This should call default constructor Box() in class Box.

} But Box class has constructor but no default constructor is there.
So ERROR occurs

class Box class BoxDemo {

{

double width
double length;
double height;
}

public static void main(String

args[]) {

Box mybox1 = new Box();

}
}

NO ERROR in this code

The following statement creates object of Box class
mybox1

Box mybox1 = new Box();

Since no constructors are not there,

Java provides the default constructor.

Prepared by Sharika T R, SNGCE

Argument Passing

* call-by-value.

— This approach copies the value of an argument into the formal
parameter of the subroutine.

— Therefore, changes made to the parameter of the subroutine
have no effect on the argument.
* call-by-reference.

— a reference to an argument (not the value of the argument) is
passed to the parameter.

— Inside the subroutine, this reference is used to access the
actual argument specified in the call.

— This means that changes made to the parameter will affect the
argument used to call the subroutine

Using Objects as Parameters

» We can pass objects as arguments(parameters) to
function(method).

» Objects are passed by reference(call by reference).

Prepared by Sharika T R, SNGCE

class Test { class PassOb {
mnt a, b; public static void main(String args[])
Test(int 1, int j) {
{ Test obl = new Test(100, 22);
a=1i Test ob2 = new Test(100, 22);
b=j; Test ob3 = new Test(-1, -1);
} System.out.println(ob1.equals(ob2));
boolean equals(T'est 0) System.out.println(ob1.equals(ob3));
{ 1}
if(o.a=—a && o0.b=—=D)
return true; OUTPUT
else return false; true
) false
53
}
class Test { class PassOb {
mt a, b; public static void main(String args[])
Test(int i, int j) {
Test ob1 = new Test(100,22);
{) Test ob2 = new Test(100, 22);
a=L Test ob3 = new Test(-1,-1);
b=j; System.out.println(obl.equals(ob2));
} System.out.println(obl.equals(ob3));
boolean equals(Test 0) 1
.{ .) OUTPUT
if(0.a == this.a && 0.b == this.b) true
return true; false
else return false;
n 54

Prepared by Sharika T R, SNGCE

Object to initialize another object

class Box class BoxDemo {

{ public static void main(String args[])

double width {

double length; Box b1 = new Box(10, 20, 15);

double height; Box b2 = new Box(b1);

Box(double w, double 1, double h) }

{) e

width = w; e

length =1; e ©

height = h; | widh 10

} Here ol?ject b2_ is_ a _clc_me of b_1. length 20
The object b2 is initialized using -

} initial values of object b1 height 15 55

Passing arguments to function

 Primitive types(int,char,double etc.) are passed by value.
* Objects are passed by reference.

56

Prepared by Sharika T R, SNGCE

class Test { class Obcall {

int a: public static void main(String args|[])

Test(int 1) {

{ Test ob = new Test(15);

a=i; System.out.println("Object parameter");

} System.out.println("Before call: " + ob.a); OUTPUT

void calc(Test o) ob.calc(ob);// //Call by reference Object parameter
{ System.out.println("After call: " + ob.a); Before call: 15
0.a%=2; int a=15; After call: 30

))) System.out.println("Integer parameter"); Integer parameter
void cale(int a) System.out.println("Before call: " + a); Before call: 15

{ After call: 15
a*=D- ob.calc(a); /Call by value

} System.out.println("After call: " + a);

} 1} 57

Returning objects

» A method can return any type of data,
— Primitive data (int ,float, char, double etc.)
— class types(objects) that you create.
— etc.

58

Prepared by Sharika T R, SNGCE

/I Returning an object.
class Test {

int a;

Test(inti)

{

a=i

}
Test increase()
{
Test temp = new Test(a+10);
return temp;

i]

class RetOb {
public static void main(String args[]) {

Testob1 = new Test(2);

Test ob2;

ob2 = ob1.increase();
System.out.printin("ob1.a: " + ob1.a);
System.out.printin("ob2.a: " + ob2.a);

ob2 = ob2.increase (); OUTPUT
i . »|0Obla: 2
System.out.printin(“increase ob2.a: b2.a 12
+0b2.a); ob2.a:
1 - increase ob2.a: 22
}ob2 \
temp J_\L,_\E al2 59

* Recursion is the process of defining something in terms

of itself.

* A method that calls itself is called recursive function.

Prepared by Sharika T R, SNGCE

/I A simple example of recursion. class Recursion {
class Factorial { public static void main(String
int fact(int n) argsf]) {
{ Factorial f = new Factorial();
int result; int s= f.fact(5)
ii(n==1) System.out.printin("Factorial of 5
return 1; is " +s)
result = n* fact(n-1) ;
return result; }
}
}

}

Final value = 120
51 50
l T 5!=5*24=120is returned
5* 4! 5% 4l
l T 4! =4* 6=24is returned
4 * 3 4 * 3!
l T 31=3*2=6is returned
awidly W28
‘ t 21=2* | =2isreturned
LR L 2Tt
l T I returned
1 1
(a) Sequence of recursive calls. (b) Values returned from each recursive call, 62

Prepared by Sharika T R, SNGCE

*Object Oriented Programming in Java
v" 1. Class Fundamentals, Declaring Objects, Object
Reference, Introduction to Methods,
v' 2. Constructors, this Keyword,
v' 3. Method Overloading, Using Objects as Parameters,
Returning Objects, Recursion,

4. Access Control, Static Members, Final Variables, Inner
Classes, Command-Line Arguments, Variable Length
Arguments.

63

Access Control

» Through encapsulation, we can control what parts of a
program can access the members of a class.
— By controlling access, you can prevent misuse.

« How a member can be accessed is determined by the
access specifier that modifies its declaration

» Java’s access specifiers are
v'public
v'private
v'protected
v default o

Prepared by Sharika T R, SNGCE

» When a member of a class is modified by the public

specifier, then that member can be accessed by any other
code. (ACCESSIBLE TO ALL)

- public nt 1;
 When a member of a class is specified as private, then

that member can only be accessed by any members of
the same class.

- private it a;

 When a member of a class is specified as protected , then
that member can be accessed within the package and by
any of its subclasses.
protected char c;

« When no access specifier is there, then its access

specifier is default.

— It can be accessed within its own package, but cannot be
accessed outside of its package

int c;

class A{

public int i

Prepared by Sharika T R, SNGCE

private double j;
protected char c;
float f;/default access
public int myMethod(int a, char b) /public method

{ .
}

67

PRIVATE DEFAULT PROTECTED PUBLIC
Same class Yes Yes Yes Yes
Same package No Yes Yes Yes
Subclass
Same package No Yes Yas Yes
MNon-subclass
Different package No No Yes Yes
Subclass
Different package No No No Yes
Non-subclass

SAME CLASS SAME PACKAGE, sAME PACKAGE
ALL

ANY SUBCLASS

68

Prepared by Sharika T R, SNGCE

class Test class AccessTest {

{ public static void main(String args[]) {
int a; // default access Test ob = new Test();

public int b; // public access ob.a = 10;

private int c; // private access ob.b = 20;

void setc(int i) //setter /I ob.c =100; // Error! // PRIVATE

{ /I You must access private variable ¢
c=i: /lthrough its methods

} ob.setc(100); /Il OK

int getc() //getter System.out.printin("a=“+ ob.a);

{ System.out.printin("b="ob.b”);

return c: System.out.printin(“c= " + ob.getc());
b} i o

static Members

» Usually we access the member of another class using
object.

» Syntax is: objectname.member;

* |[f we want to access a member of another class without
using object, then we have to make it a make it a static
member.

— Static class member is independent of any object of that class.

We can make a member static by preceding the member
declaration with the keyword static.

static datatype member;
70

Prepared by Sharika T R, SNGCE

 When a member is declared static, it can be accessed

« Static member can be accessed using

before any objects of its class are created, and without
reference to any object.

classname.member;

71

The most common example of a static member is main
function.
— main() is declared as static because it must be called before

any objects is created.
Instance variables declared as static are global variables.
When objects of its class are declared, separate copy of a
static variable is NOT made.

All instances(objects) of the class share the same static
variable.

Prepared by Sharika T R, SNGCE

» Methods declared as static(static methods) have several
restrictions:
— static methods can only call other static methods.
— static methods must only access static data.
— static methods cannot refer to this or super.

* If we need to do computation to initialize your static
variables, we can declare a static block that gets
executed exactly once, when the class is first loaded.

73

» /I Demonstrate static variables, methods, and blocks.
class UseStatic {

static inta = 3;

static int b;

static void show(int x) {

System.out.printin("x =" + x); OUTPUT

System.out.printin("a =" + a); . e 1
System.out.printin("o =" + b); Static block initialized.

} X =42
static { a=3
System.out.printin("Static block initialized."); b=12
b=a*4,

Y

public static void main(String args[])

{show(42);

} 74

}

Prepared by Sharika T R, SNGCE

Working of e.g. code

* As soon as the UseStatic class is loaded, all of the static
statements are run.
— First, static member a is set to 3,

— then the static block executes, which prints a message and
then initializes bto a * 4 or 12.

— Then main() is called, which calls show(), passing 42 to x.

— The three printin() statements in show refer to the two static
variables a and b, as well as to the local variable x.

 if we want to call a static method from outside its class,

we can do so using the following general form:

classname.method();

* Here classname is the name of the class in which the
static method is declared.

Prepared by Sharika T R, SNGCE

Non-static method invocation

class Demo {

inta=42;

intb =99;

void callme()

{

System.out.printin("a =" + a);
}

}

class Sample {

public static void main(String args[]) {
Demo dm=new Demo ();
dm.callme();

System.out.printin("b =" + dm.b);

1}

77

class StaticDemo {

static inta =42;

static int b = 99;

static void callme()

{

System.out.printin("a =" + a);
}

}

class StaticByName {
public static void main(String args[])

{

StaticDemo.callme();
System.out.printin("b =" + StaticDemo.b);

1}

static method invocation

78

Prepared by Sharika T R, SNGCE

Non

class Demo {

inta =42;

int b=5;

void callme()

{

System.out.printin("a =" + a);
}

}

class Sample {

public static void main(String args[]) {
Demo dm=new Demo();
dm.callme();

System.out.printin("b =" + dm.b);

1}

Static members

class StaticDemo {

inta =42;

static intb = 5;

static void callme()

{

System.out.printin("a =" + a);
}

}

class StaticByName {
public static void main(String args[])
{
StaticDemo.callme();
System.out.printin("b

)

" + StaticDemo.b);

79

class Sample

Lo OUTPUT

static inta = 0; ob1

int b; static after +2a =2

Sample() b after +2 = 2

{ A ob2

) b=0; static after +2a =4
b after +2 = 2

void callme() atter

{

a=a+2;

b=b+2;

System.out.printin("static after +2 a="+ a);
System.out.printin("b after +2 =" + b);

}

}

class Samplestat {
public static void main(String args[])

{

Sample ob1=new Sample();
System.out.printin("ob1");
ob1.callme();

Sample ob2=new Sample();
System.out.printin("ob2");
ob2.callme();

)

80

Prepared by Sharika T R, SNGCE

static variable

a 4

obl

ob2

81

Final Variables

» Avariable can be declared as final by prefixing final keyword.

» The contents of final variables cannot be modified.

 We must initialize a final variable when it is declared.

E.g.

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

* It is a convention to choose uppercase identifiers (CAPITAL
LETTERS) for final variables. E.g. TOTAL

» We can use final variables as if they were constants, without fear
that a value has been changed.

» Variables declared as final do not occupy memory on a per- o
instance basis.

Prepared by Sharika T R, SNGCE

Nested Class In

 Java

Nested Classes

* Itis possible to define a class within another class; such
classes are known as nested classes.

» The scope of a nested class is bounded by the scope of
its enclosing class(outer).

— Thus, if class B is defined within class A, then B does not exist
independently of A.

» A nested class has access to the members, including private
members, of the enclosing(outer) class.

* The enclosing class does not have access to the members of the
nested class.

84

Prepared by Sharika T R, SNGCE

* A nested class, that is declared directly within its
enclosing class scope, is a member of its enclosing class.
class Outer

{

//variables and methods

class Inner

{

//variables and methods

}
}

» There are two types of nested classes: static and non-
static.

85

- Static nested class
— A static nested class is one that has the static modifier applied.

— It must access the members of its enclosing class through an
object.

— It cannot refer to members of its enclosing class directly.

Prepared by Sharika T R, SNGCE

e /| De
class

{

int outer_x = 100;

void test() {
Nested nested= new Nested ();
nested.display();

}
static class Nested { /Istatic nested class
void display() {
Outer obj = new Outer();
System.out.printin("display: outer_x =" + obj.outer_x);
}
, OUTPUT

class NestedClassDemo { display: outer_x = 100
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

1}

* Non static class
— A non-static nested class is called inner class.

— An inner class has access to all of the variables and methods of
its outer class.

— It may refer to members of its enclosing class directly in the
same way that other non-static members of the outer class do.

Prepared by Sharika T R, SNGCE

/l Demo
class O
{
int outer_x = 100;
void test() {
Inner inner = new Inner();
inner.display();

) OUTPUT

class Inner { display: outer_x =100
void display() {

System.out.printin("display: outer_x =" + outer_x);

}

}
}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();

}} 89

* In the program, an inner class named Inner is defined within the
scope of class Outer.

» Therefore, any code in class Inner can directly access the variable
outer_x in Outer class.

» Aninstance method named display() is defined inside Inner.
— This method displays outer_x on the standard output stream.

* The main() method of InnerClassDemo creates an instance of
class Outer and invokes its test() method.

» That method creates an instance of class Inner and the display()
method is called.

Prepared by Sharika T R, SNGCE

* An instance(object) of Inner can be created only within the
scope of class Outer.

 We can create an instance of Inner class outside of Outer
class by qualifying its name with Outer classname, as in

Outer.Inner ob=outerobject.new Inner();

* An inner class can access all of the members of its
enclosing class, but the reverse is not true.

* Members of the inner class are known only within the
scope of the inner class and may not be used by the outer
class. 91

» We can define a nested class within the block defined by
a method or even within the body of a for loop

Prepared by Sharika T R, SNGCE

/I Defin
class
int outer_x = 100;
void test() {
for(inti=0; i<5; i++)
{ class Inner{
void display() {
System.out.printin("display: outer_x =" + outer_x);

} } OUTPUT
Inner inner = new Inner(); display: outer_x = 100
inner.display(); display: outer_x = 100
} display: outer_x = 100
} } display: outer_x = 100
class InnerClassDemo { display: outer_x = 100

public static void main(String args|[]) {
Outer outer = new Outer();
outer.test(); 1}

93

Command-Line &

Variable Length

Arguments.In
.

Prepared by Sharika T R, SNGCE

Command-Line Arguments

* |If we want to pass information into a program when you
run it, then you can do this by passing command-line
arguments to main().

* A command-line argument is the information that follows
program’s name on the command line when it is
executed.

« Command-line arguments are stored as strings in a String
array passed to the args parameter of main().

— The first command-line argument is stored at args[0]
— the second at args[1]
— SO On.

95

Output
/I Display all command-line arguments. args(0]: this

i args[1]:is
class CommandLine { args[2]: a
. . . .) args[3]: test
public static void main(String argsl]) { argsEg%: e
]] . . args[5]: -
for(int i=0; i<args.length; i++)

System.out.printin("args[" + i + "]: " + args]i]);

}
}

« Compile this using javac and execute this program as:-
java CommandLine this is a test 100 -1

96

Prepared by Sharika T R, SNGCE

Variable length arguments

In Java methods can take a variable number of arguments.
— This feature is called varargs or variable-length arguments.

A method that takes a variable number of arguments is called a
variable-arity method, or simply a varargs method.

E.g. A method that opens an Internet connection might take a
user name, password, filename, protocol, and so on, but supply
defaults if some of this information is not provided. Here it is better
to pass only the arguments to which the defaults did not apply.

E.g. printf() method can have any number of arguments.

Handling variable length arguments

* If the maximum number of arguments is small and known,
then we can create overloaded versions of the method,
one for each way the method could be called.

* If the maximum number of potential arguments is larger,
or unknowable, then the arguments can be put into an
array, and then the array can be passed to the method.

Prepared by Sharika T R, SNGCE

class PassArray {

st{atic void test(int v[]) * This old method requires that

System.out.print("Number of args: " + these argu.ments be manl'_la"y
v.length + " Contents: "); packaged into an array prior to

for(int x : v) calling the function test().

System.out.print(x+ " ");
System.out.printin();

}

public static void main(String argsl[]) OUTPUT

{ _ _ Number of args: 1 Contents: 10
::: :;H - E 102}’ 3} Number of args: 3 Contents: 12 3
int n3[] ={};’ T Number of args: 0 Contents:s

test(n1);// 1 arg
test(n2);// 3 args

test(n3);// no args
} 99

A variable-length argument is specified by three periods
(...).

* E.g.

static void test(int ... v) { //statemenst }

» This syntax tells the compiler that test() can be called
with zero or more arguments.

100

Prepared by Sharika T R, SNGCE

class PassArray {
static void test(int ...v)
{
System.out.print("Number of args: " + v.length + " Contents: ");
for(intx : v)
System.out.print(x +"");
System.out.printIn();

}
?ubllc static void main(String argsl]) OUTPUT
i Number of args: 1 Contents: 10
test(10); //_1 arg Number of args: 3 Contents: 12 3
test(1,2,3); // 3 args . .
_ Number of args: 0 Contents:
test(); // no args

} 101
}

» A method can have “normal” parameters along with a
variable-length parameter.

* However, the variable-length parameter must be the last
parameter declared by the method.

* E.g:
mt test(int a, int b, double ¢, int ... vals) { //statements }
VALID
* E.g.
mt test(int a, int b, double ¢, mnt ... vals, boolean stopFlag) {
// ERROR! o

Prepared by Sharika T R, SNGCE

"MODULE 2 ENDS

