Prepared by Sharika T R, SNGCE

CST281

Object Oriented Programming

MODULE 2
Core Java Fundamentals

Syllabus

»Primitive Data types - Integers, Floating Point Types, Characters, Boolean.
Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.
» Operators - Arithmetic Operators, Bitwise Operators, Relational Operators,

Boolean Logical Operators, Assignment Operator, Conditional (Ternary)
Operator, Operator Precedence.

»Control Statements - Selection Statements, Iteration Statements and Jump
Statements.

» Object Oriented Programming in Java - Class Fundamentals, Declaring
Objects, Object Reference, Introduction to Methods, Constructors, this
Keyword, Method Overloading, Using Objects as Parameters, Returning
Objects, Recursion, Access Control, Static Members, Final Variables, Inner
Classes, Command-Line Arguments, Variable Length Arguments.

Prepared by Sharika T R, SNGCE

DATA TYPES, OPERATORS & CONTROL
STATEMENTS

DATA TYPES

» Data type defines the values that a variable can take, for
example if a variable has int data type, it can only take
integer values.

» Data types specify the different sizes and values that can
be stored in the variable.

» There are two types of data types in Java:
—Primitive data types
—Non-primitive data types

Prepared by Sharika T R, SNGCE

DATA TYPES

Primitive Data Types (Fundamental Data Types)

A primitive type is predefined by the language and is
named by a reserved keyword.

» Java defines eight primitive types of data: byte, short, int,
long, char, float, double, and boolean.

Integers: byte, short, int, and long, which are for whole-valued signed

numbers.

Floating-point numbers : float and double, which represent numbers with
fractional precision.

Characters: char, which represents symbols in a character set, like letters
and numbers.

Boolean: boolean, which is a special type for representing true/false values.

Prepared by Sharika T R, SNGCE

» Java defines four integer types: byte, short, int, and long

Name Width |Range

long 64 -9,223,372,036,854,775,80810
9,223,372,036,854,775.807

int . 32 —2,147.,483.648102,147.483.647

short . 16 -32,7681032,767

byte = 3 -128t0127

‘ \‘

* byte:
— The smallest integer type is byte.

— This is a signed 8-bit. Variables of type byte are especially
useful when you’re working with a stream of data from a
network or file.

— when you're working with raw binary data that may not be
directly compatible with Java’s other built-in types.

— Byte variables are declared by use of the byte keyword.

— For example, the following declares two byte variables called b
and c:

byte b, c;

Prepared by Sharika T R, SNGCE

» Short is a signed 16-bit type.

— you can use a short to save memory in large arrays, in situations where
the memory savings actually matters.

— Example : short s;
* The most commonly used integer type is int.

— In addition to other uses, variables of type int are commonly employed to
control loops and to index arrays.

— Example: int a;
* long

— is a signed 64-bit type and is useful for those occasions where an int type
is not large enough to hold the desired value.

— Example: long a;

i Compl.lte distance light travels using long variables.
class Light ¢{

pu?lic static void main(String args(]) {
-int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here
seconds = days * 24 * 60 * 60; // convert to seconds

distance = lightspeed * seconds; // compute distance
2 " " day s) ;

System.out.prlnt(In + : N

System out .print (" days light will travel about ");

System.out.println(distance kel miles.");

i ' 10
}

Prepared by Sharika T R, SNGCE

Floating-point numbers

Floating-point numbers, also known as real numbers, are
used when evaluating expressions that require fractional
precision.

The type float specifies a single-precision value that uses
32 bits of storage.

Variables of type float are useful when you need a
fractional component, but don’t require a large degree of
precision.

Example: float highTemp, lowTemp;

» Double precision, as denoted by the doublekeyword, uses
64 bits to store a value.

* When you need to maintain accuracy over many iterative
calculations, or are manipulating large-valued numbers,
double is the best choice.

« Example : double pi, r, a;

Prepared by Sharika T R, SNGCE

// Compute the area of a circle.
class Area |
public static void main(String args[]) {
double pi, r, a;

r = 10.8; // radius of circle

pi = 3.1416; // pi, approximately
a=pi*r*r; // compute area
System.out.println("Area of circle is " + z);

}
I

In Java, the data type used to store characters is char.
Java uses Unicode to represent characters

At the time of Java's creation, Unicode required 16 bits.

Thus, in Java char is a 16-bit type.
Example: char letterA="A’;

Prepared by Sharika T R, SNGCE

// Demonstrate char data type.
class CharDemo |
public static void main(String args[]) {
char chl, ch2;

chl
ch2

B8; // code for X
|Yr;

System.out.print ("chl and ch2: ");
System.out.println(chl + " " + ch2);

}
}

This program displays the following output:

chl and ch2: X Y 15

Booleans

Java has a primitive type, called boolean, for logical
values.

It can have only one of two possible values, true or false.

This is the type returned by all relational operators, as in
the case of a <b.

Example: boolean bool;

Prepared by Sharika T R, SNGCE

// Demonstrate boolean values.
class BoolTest {

public static void main(String args(]) {
boolean b;

b = false; . /

System.out.println("b is " + b);
b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("Thisg is executed.");

b = false;
if(b) System.out.println("This is not executed. ") ;

// outcome of a relational operator is a boolean value
System.out.println(“

g 10 > 9 ig » + (10 > 9)); 17

LITERALS IN

JAVA

Prepared by Sharika T R, SNGCE

« A constant value in Java is created by using a literal
representation.

1. Integer Literals

2. Floating-Point Literals
3. Boolean Literals

4. Character Literals

5. String Literals

Integer Literals

* Any whole number value is an integer literal.
« Examplesare 1, 2, 3, and 42

* There are three bases which can be used in integer
literals

1. Decimal(base 10)
2. octal (base 8)
3. hexadecimal (base 16).

Prepared by Sharika T R, SNGCE

* Normal decimal numbers
— cannot have a leading zero.
— can use digits from 0 to 9
* Octal values
— are denoted by a leading zero.
— can use digits from 0 to 7
— E.g 012, 0356
* Hexadecimal constant
— are denoted with a leading zero-x, (0Ox or 0X).

— use digits from 0 to 9 and letters A through F (or a through f) E.g.
0x234, 0X3B5c 21

« An integer literal can always be assigned to a long
variable.

— Append an upper- or lowercase L to the literal
» 9223372036854775807L

* integer can also be assigned to a char as long as it is
within range.

« literal value is assigned to a byte or short variable as
long as it is within range.

Prepared by Sharika T R, SNGCE

Floating-Point Literals

 Floating-point numbers represent decimal values with a fractional
component.

Standard notation consists of a whole number component
followed by a decimal point followed by a fractional component.

—E.g. 3.14159, 2.0

Scientific notation uses a standard-notation floating-point number

plus a suffix (that specifies a power of 10 by which the number is

to be multiplied.)

—The exponentis indicated by an E or e followed by a
decimal number, which can be positive or negative

—E.g. 6.022E23, 314159E-05, 2e+100. 23

Floating-point literals in Java are double precision by
default.

To specify a float literal, we must append an F or f to the
constant.

We can also explicitly specify a double literal by
appending a D or d.

The default double type consumes 64 bits of storage,
while the less-accurate float type requires only 32 bits

Prepared by Sharika T R, SNGCE

Boolean Literals

Boolean literals are simple.

There are only two logical values that a boolean value can
have,
— true , false.

The values of true and false do not convert into any
numerical representation.

The true literal in Java does not equal 1
The false literal in Java does not equal 0.

Character Literals

» Characters in Java are indices into the Unicode character
set.

* They are 16-bit values that can be converted into integers
— and manipulated with the integer operators, such as the
addition and subtraction operators.
* A literal character is represented inside a pair of single
quotes.
— All of the visible ASCII characters can be directly entered inside

the quotes, such as ‘a’, 'z, and ‘@’.

Prepared by Sharika T R, SNGCE

Escape sequences

For characters that are impossible to enter directly, there are several escape
sequences that allow you to enter the character you need

\n’ for the newline character.
\” for the single-quote character

Z?]Zt:ci-:r Escape Escape Sequence Description
Sequences \ddd Octal character (ddd)
LXK Hexadecimal Unicode character (xxx)
\' Single quote
\" Double quote
AN Backslash
\r Carriage return
\n New line (also known as line feed)
\f Form feed
A\t Tab o7
\b Backspace

String Literals

 String literals in Java are specified like they are in most
other languages—Dby enclosing a sequence of characters
between a pair of double quotes

« Examples of string literals are
— “Hello World”
— “two\nlines”
—“\"This is in quotes\

28

Prepared by Sharika T R, SNGCE

Variables In Java

Variables In JAVA

Variable in Java is a data container that stores the data
values during Java program execution.

Variable is a memory location name of the data.

variable="vary + able" that means its value can be
changed.

In order to use a variable in a program we need to
perform 2 steps

1. Variable Declaration
2. Variable Initialization

30

Prepared by Sharika T R, SNGCE

« All variables must be declared before they can be used.
» The basic form of a variable declaration s :
type identifier [[= value][, identifier [= value] ...] ;

* The type is one of Java’s atomic types, or the name of a
class or interface.

* The identifier is the name of the variable.

« Square bracket denote that =Value is optional in
declaration.

31

1. Variable Declaration

Syntax: data_type variable_name ;

Eg: int a,b,c; type name
float pi; b
double d; int count;

2. Variable Initialization

Syntax : data_type variable_name = value;

Eg: inta=2,b=4,c=6; int num = 45.66;

float pi = 3.14f;
double val = 20.22d;
chara="v’;

Prepared by Sharika T R, SNGCE

Variable Name

In programming ’////
age

int age = 21 ;

Value of the

VELEL G

k Random Access
RAM Memory

33

« Java allows variables to be initialized dynamically, using
any expression valid at the time the variable is declared.

J/ Demonstrate dynamic initialization.
class DynInit {
public static woid main(String argsI[l) {
double a = 3.0, b = 4.0;

J// o is dynamically initialized
double ¢ = Math.sgrt{a * a + b * b):

System.out.println{"Hypotenuse is " + c);

34

Prepared by Sharika T R, SNGCE

SCope‘ a
Lifetime of

Variables In Java

The Scope and Lifetime of Variables

» All of the variables used have been declared at the start
of the main() method.

« Java allows variables to be declared within any block.

— a block begins with an opening curly brace and ended by a
closing curly brace.

— A block defines a scope.
A block begins with{ and end with }
» A scope determines what objects are visible to other parts
of your program.

« Scope also determines the lifetime of those objects.

36

Prepared by Sharika T R, SNGCE

« Two major scopes are
— Scope defined by a class
— Scope defined by a method.

 Variables declared inside a scope are not visible (that is,
accessible) to code that is defined outside that scope.
— Local variable

The Scope and Lifetime of variables(contd.)

» Scopes can be nested.

— Each time you create a block of code, we are creating a new,
nested scope.

— The outer scope encloses the inner scope.

— This means that objects declared in the outer scope will be
visible to code within the inner scope.

{/louter

{l/linner
{/linnermost

}

Prepared by Sharika T R, SNGCE

The Scope and Lifetime of variables(contd.)

// This fragment is wrong!
count = 100; // cannot use variable before it is declared!
int count;

» Variables are created when their scope is entered, and
destroyed when their scope is left.

— This means that a variable will not hold its value once it has
gone out of scope.

« Variable can be reinitialized each time it enters the block
in which it is declared
class LifeTime {
public static void main(String args][]) {
int x;
for(x = 0; x < 2; x++)
{
inty = -1; /y is initialized each time block is entered
System.out.printin("y is: " +y); // this always prints -1
y =100;
System.out.printin("y is now: " +y);

bt

Prepared by Sharika T R, SNGCE

» Although blocks can be nested, you cannot declare a variab! to

have the same name as one in an outer scope.
/I This program will not compile
class ScopeErr {
public static void main(String args|[])
{ intbar=1;
{ //creates a new scope
int bar = 2; // Compile-time error
// bar already defined in outer scope!

}

Type' COheSif;. -
and CastingIn

Java

Prepared by Sharika T R, SNGCE

Type Conversion and Casting

* If the two types are compatible, then Java will perform
the conversion automatically(implicitly).
— it is always possible to assign an int value to a long variable.

* The conversion between incompatible types are to be
done explicitly.

43
Java’s Automatic Conversions

« When one type of data is assigned to another type of
variable, an automatic type conversion will take place if
the following two conditions are met:

— The two types are compatible.
— The destination type is larger than the source type.

Destination) = source
(same type or larger)

* When these two conditions are met, a widening
conversion takes place.

Prepared by Sharika T R, SNGCE

Java’s Automatic Conversions(contd.)

« For widening conversions, the numeric types, including
integer and floating-point types, are compatible with each
other.

— No automatic conversions from the numeric types to char or
boolean.

« Java also performs an automatic type conversion when a
literal integer constant is stored into variables of type byte,
short, long, or char.

45

byte = short 2 int =2 long = float =2 double

»
Cd

WIDENING CONVERSION
SMALL--eeeeeeeeeeeeeeene> LARGE

46

Prepared by Sharika T R, SNGCE

Casting Incompatible Types

« If we want to assign an int value to a byte variable.
— This conversion will not be performed automatically, because a
byte is smaller than an int.
byte variable=integer
(small) (large) x
* This is called narrowing conversion.
» To create a conversion between two incompatible types,
we must use a cast.

47
» A cast is simply an explicit type conversion. It has this general
form:
(target-type) value
— target-type specifies the desired type to which value is to be
converted.
int a;
byte b;
b = (byte) a;
« If the integer’s value is larger than the range of a byte, it will be

reduced to modulo (the remainder of an integer division) by the
byte’s range(256). 48

Prepared by Sharika T R, SNGCE

« A different type of conversion will occur when a floating-
point value is assigned to an integer type: truncation.

— If the value 1.23 is assigned to an integer, the resulting value
will simply be 1.

mt a=1.23; // here variable a stores only 1
// .23 will have been truncated

49
« If the size of the whole number component is too large to fit into
the target integer type, then that value will be reduced modulo the
target type’s range.
E.g.
byte b;
inti=257;
b=(byte) i;
Here byte(-128 to 127) is smaller than 257, so the value stored in b is
257 mod 256=1

* When the large value is cast into a byte variable, the result is the
remainder of the division of value by 256

Prepared by Sharika T R, SNGCE

byte = short 2int 2 long = float 2 double

WIDENING CONVERSION
(AUTOMATIC / IMPLICIT)

>

SMALL-w-=nmsmmemmemmememmemmenmeemee-d LARGE

double—> float 2long =2 int = short 2 byte
NARROWING CONVERSION

EXPLICIT >

Automatic Type Promotion in Expressions

byte a = 40;

byte b = 50;

byte ¢ = 100;

intd=a * b/ c;// conversions may occur in expressions.

* Here intermediate term a * b (40*50=2000) exceeds the range of
its byte operands(-128 to 127) a and b.

« To handle this kind of problem, Java automatically promotes each
byte, short, or char operand to int when evaluating an expression.

« SO0 no error.
« Variable d will contain 20 o

Prepared by Sharika T R, SNGCE

byte b = 50;
b=b *2; //Error! Cannotassign an int to a byte!

— In expression b*2, automatic promotion occurs . i.e. result of
b*2 (50%2=100) is promoted to integer.

— This result(integer value) is larger than byte type variable b
where it is to be stored.

* So ERROR is shown.

+ To solve this issue, explicit conversion is needed for
result.

byte b = 30;
b = (byte)(b * 2);
NO ERROR 53

The Type Promotion Rules

First, all byte, short, and char values are promoted to int.

If one operand is a long, the whole expression is
promoted to long.

If one operand is a float, the entire expression is
promoted to float.

If any of the operands is double, the result is double.

54

Prepared by Sharika T R, SNGCE

class Promote { (
=>
= la

public static void main(String args[]) {

byte b =42; f*b, bis promotedto a float (result float)
charc="a" i/ c, cis promoted to jnt, and the resultis of type int.
d * s, the value of s is promoted to double — result double
shorts = 1024, floatplus an int is a float.
int i = 50000: float minus the double is promoted to double
RESULT double
floatf=5.671;

doubled = .1234;

doubleresult = (f* b) + (i/) - (d * 5);
H

}

55

’ Operators In
Java

Prepared by Sharika T R, SNGCE

Operators

» An operator is a symbol that tells the computer to perform

« certain mathematical or logical manipulation.

« Java operators can be divided into following categories:
1. Arithmetic Operators

2. Relational Operators
3. Bitwise Operators
4. Logical Operators
5. Assignment Operators
6. conditional operator (Ternary) .
Arithmetic Operators
Operator Name Description Example
+ Addition Adds together two values X +y
- Subtraction Subtracts one value from another X -y
* Multiplication Multiplies two values X *y
/ Division Divides one value by another x/y
% Modulus Returns the division remainder x % vy
++ Increment Increases the value of a variable by 1 ++x
- Decrement Decreases the value of a variable by 1 —x
58

Prepared by Sharika T R, SNGCE

/S Demonstrate the basic arithmetic operators.
class BasicMath {
public static wvoid main(String argsl[l) {

S/ arithmetic using integers
Eystem.out .println("Integer Arithmetic™) ;
int 1 + 1;
int a * 3;
int b/ 4;
int c - a;
int e -d;
Eystem.out .println("a "
Eystem.out .println("b
Eystem.out .println("c
System.out .println("d
System.out .println("e

Integer Arithmetic
a

o]
C
d = -1
a

oo
Il
(i8]

a);
bl ;
c);
d) ;
el ;

s

Floating Polnt Arithmetic

J/ arithmetic using doubles da = 2.0
System.out .printin("\nFloating Point Arithmetic™) ; db = 6.0
double da 1 + 1; dC - 1‘5
double db da * 3;
double de = db / 4: dd = -0.5
double dd doc - a; de = 0.5
double de -dd;
System.cut .println("da
System.out .println("db
Eystem.out .println("dc
Eystem.out .printlin("dd dd) ;
System.out .printlin("de de) ; 59
'

}

da) ;
db) ;
dc) ;

o+ o+ o+ o+

The Modulus Operator

» The modulus operator, %, returns the remainder of a
division operation.

* |t can be applied to floating-point types as well as integer

types // Demonstrate the % operator.
class Modulus ({
public static wvoid main(String args“]) {
int x = 42;
double yv = 42.25;

System.out.println("x mod 10 "+ x % 10);
System.out.println("y med 10 = " + y % 10);

}

}

When you run this program, you will get the following output:

X mod 10 2 60
vy mod 10 = 2.25

Prepared by Sharika T R, SNGCE

Arithmetic Compound Assignment Operators

» Java provides special operators that can be used to
combine an arithmetic operation with an assignment.

a=a+4; ‘ a +=4;

» There are compound assignment operators for all of the
arithmetic, binary operators.

var = var op expression; ‘ var op= expression;

61

// Demonstrate several assignment operators.
class OpEquals
public static void main(String argsl([]) {
int a
int b
int c

([-]
L8]

+= 5
*= 4
+= a * b;
c %= 6;
System.ocut.println("a
System.cut.println("b
System.out.println("c

}
}

i

0 oW

"+ a);
" + b);
"+)

The output of this program is shown here:

6
8
3

a
b
c

62

Prepared by Sharika T R, SNGCE

Increment and Decrement

* The ++ and the — -
Increment and Decrement Operator ~ _ -~ .. .

and decrement

operators
per
* The increment

operator increases its

Prefix lncrement Postfix lncrement Prefix Decremenl Postfix Decrement o) pera n d by one.
i ﬁ ﬁ 6 " operstor deore
operator decreases its
Increment a by 1 | | Use the current Decrement a by 1 | | Use the current operan d by one
then use the new value of a in the then use the new value of a in the
value of a in the expression, then value of a in the expression, then
expression. increment a by 1. expression. decrement a by 1.

63

Pre-Increment Post increment(Prefix/Postfix)

* In prefix form the operand is incremented or decremented
before the value is obtained for use in the expression.

* In postfix form the previous value is obtained for use in
the expression, and then the operand is modified.

* Preincrement E.g
x=42;

x43
y=++X; y 43

* Postincrement E.g

— . x43
Xx=42; y42 o4
y:x-l—l—;

Prepared by Sharika T R, SNGCE

// Demonstrate ++.
class IncDec {
public static void main(String args|[]) {
int = 1;
int = 2
int
int
C = ++b;
d = a++; The output of this program follows:
C++;
System.out.println
System.out.println
System.out.println
System.out.println

o0 oo

a

s "
[+
d

il

+ 4+ + +
Eagol
(S TR T &
= s L B

65

Bitwise operators

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

= Bitwise OR assignment

A= Bitwise exclusive OR assignment
>>= Shift right assignment

>>>= Shift right zero fill assignment
<<= Shift left assignment

66

Prepared by Sharika T R, SNGCE

Bitwise logical oprators

AlB A&B AMB ~A

el =

&
0
0
0
1

[l e e T e Y = = |
[EE R A =
o | e |
o e | | e

67

00101010 42
00101010 42
& 00001111 15 | 00001111 15
00001010 10 00101111 47
00101010 42 ~00101010
A 00001111 15 ST

00100101 37 11010101

Prepared by Sharika T R, SNGCE

» The left shift operator, <<, shifts all of the bits in a value tothe
left a specified number of times.

* It has this general form: value << num

» num specifies the number of positions to left-shift the value in
value.

« <<moves all of the bits in the specified value to the left by the
number of bit positions specified by num

M
| o LSB

7 6
0

Lol B~

3
0

=N
[Ery

5
[ofoo]1]

0]
Lofo]

1]of1]1]1

oJ«fo] e

» Each time you shift a value to the right, it divides that value by
two—and discards any remainder.

» When you are shifting right, the top (leftmost) bits exposed by the
right shift are filled in with the previous contents of the top bit.

» This is called sign extension and serves to preserve the sign of
negative numbers when you shift them right. For example, —8 >>
1is —4

= | N MSB

11111000 -8

==]

11111100 4 A

70

—
—
o
o
[
o
[
[

Prepared by Sharika T R, SNGCE

o B

int a = 32;

a=a > 2; // a now contains 8
o Ep

int a = 35;
a=a > 2; // a still contains 8

00100011 35
>>2
00001000 8

7

Boolean Logical Operators

Operator Result

& Logical AND

I Logical OR

A Logical XOR (exclusive OR)
Il Short-circuit OR

&l Short-circuit AND

! Logical unary NOT

&= AND assignment

I= OR assignment

A= XOR assignment

== Equal to

1= MNot equal to ’s

7 Ternary if-then<lse

Prepared by Sharika T R, SNGCE

inta=4; :\?> javac Relation. java
: :\? java Relation
ntb=1; Zfalse

boolean ¢ = a <b;//c contains false. 4 1s not less than 1
Here the result of a<b (which is false) is stored in c.
E.g.

mt done;

if(!done) ... // Vahid in C/C++

if(done) ... // but not valid m Java.

73

» The logical Boolean operators, &, |, and #, operate on
boolean values in the same way that they operate on
the bits of an integer.

A B AlB A&B AMB A
False False False False False True
True False True False True False
False True True False True True
True True True True False False

74

Prepared by Sharika T R, SNGCE

Short-Circuit Logical Operators

» Secondary versions of the Boolean AND and OR
operators, and are known as short-circuit logical
operators.

* The OR operator results is true when A is true, no matter
what B is. Similarly, the AND operator results in false
when A is false, no matter what B is.

* If you use the || and && forms, rather than the | and &
forms of these operators, Java will not bother to evaluate
the right-hand operand when the outcome of the
expression can be determined by the left operand alone.

75

* E.g

if (denom != 0 && num / denom > 10)

» Here if denom is 0 the second expression is not validated
— So there is no risk of causing a run-time exception when denom
IS Zero.
« If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-
time exception when denom is zero.

76

Prepared by Sharika T R, SNGCE

Relational operators

Operator Result

== Equal to

1= Mot equal to

> Greater than

= Less than

= Greater than or equal to
== Less than or equal to

Assignment Operator

* var = expression;

» Here, the type of var must be compatible with the type of
expression.

* It allows you to create a chain of assignments

mtx, vy, z

x=y=z=100; //setx,y, and z to 100

Prepared by Sharika T R, SNGCE

Ternary (conditional or three-way) operator

» The ? Operator has this general form:
expressionl ? expression2 : expressiond

* Here, expression1 can be any expression that evaluates
to a boolean value.

— If expression1 is true, then expression2 is evaluated; otherwise,
expression3 is evaluated.

— The result of the ? operation is that of the expression
evaluated.

— Both expression2 and expression3 are required to return the
same type, which can’t be void

mt a=3,b=5;

mt c=(a>bla:b);

 Here a>b is false so the value of b is stored in c.

Prepared by Sharika T R, SNGCE

Operator Precedence

Operator precedence determines the order in which the
operators in an expression are evaluated.

mt mylnt = 12 -4 * 2;

What will be the value of myInt? Will it be (12 - 4)*2, that
is, 16?7 Or it will be 12 - (4 * 2), that is, 47?

When two operators share a common operand, 4 in this
case, the operator with the highest precedence is
operated first.

In Java, the precedence of * is higher than that of -.
Hence, the multiplication is performed before subtraction,
and the value of mylint will be 4.

81

Prepared by Sharika T R, SNGCE

Associativity of operators

* When an expression has two or more operators with the
same precedence, the expression is evaluated according
to its associativity.

— It is the order of applying operators
a=b=c;

* Here, the value of c is assigned to variable b. Then the

value of b is assigned of variable a. Why? It's because the
associativity of = operator is from right to left.

83

Type

Operator Associativity

Associativity

Parentheses
Array subscript
Member selection

Left to Right

Unary post-increment
Unary post-decrement

Right to left

Unary pre-increment
Unary pre-decrement
Unary plus

Unary minus

Unary logical negation
Unary bitwise complement
Unary type cast

Right to left

Multiplication
Division
Modulus

Left to right

Addition
Subtraction

Left to right

84

Prepared by Sharika T R, SNGCE

o Bitwise left shift
== Bitwise right shift with sign extension|| Left to right
=>> |Bitwisc night shift with zero extension

< |Relational less than
<= [Relational less than or equal
> [Relational greater than Left to right
= Relational greater than or equal
instanceof|| Type comparison (objects only)
— |Relational is aqual o .
[
= |Relational 1s not equal to Erftoniot
& ||Bitwise AND Lefi 1o right
A Bitwise excluaive OR Left to right
Bitwise inclusive OR Left ta right
&& ||Logical AND Leftto right
| |Cogical OR Ledtta right
7: |Temary conditional Right to left
= [Assignment
= Addition assignment
-= Subtraction asstgnment .
*= Multiplication assignment Ryghttolety
/= Division assignment 85
Y%= |Modulus assignment

Associativity

» Right to Left associative
— Unary operators
— Assignment operators
— Conditional(ternary) operators)

 All other operators are Left to Right associative

86

Prepared by Sharika T R, SNGCE

Control
statements (|f) In

Java

Control statements

« A programming language uses control statements to
cause the flow of execution to advance and branch based
on changes to the state of a program

» Categories of control statements
v' Selection Statements,

v lteration Statements
v' Jump Statements.

88

Prepared by Sharika T R, SNGCE

+ Selection statements allow the program

— to choose different paths of execution based on condition
(outcome of an expression or the state of a variable).

* |teration statements enable program execution

— to repeat one or more statements (that is, iteration statements
form loops).

« Jump statements allow your program
— to execute in a nonlinear fashion.

 Also called decision making statements.
» Selection statements control the flow of program’s

execution based upon conditions known only during run
time. It helps to choose different paths of execution based

on condition.

« Java supports two selection statements:
vif
v'switch

Prepared by Sharika T R, SNGCE

 if statementis Java’s conditional branch statement.

VIt can be used to route program execution through different
paths.

» Syntax of simple if statement

if (condition)

{

// block of code to be executed if the condition 1s true

class Sample{
public static void main(String args|])
{

mnt a=j;

E:\> javac Sample. java

E:\>java Sample
1f(a>0) a is a positive number

{

System.out.println(" a 1s a positive number”);

92

Prepared by Sharika T R, SNGCE

If-else statement

* General form of the if statement:

if (condition)
statementl;

else

statement2;

« Statement may be a single statement or a compound
statement enclosed in curly braces (that is, a block).

* The condition is any expression that returns a boolean
value.

» The else clause is optional.

Working of if-else

if (condition)
statementl;
else
statement2;
« |f the condition is true, then statement1 is executed.
» Otherwise, statement2 (if it exists) is executed.
» Both statements will not be executed at the same time.

Prepared by Sharika T R, SNGCE

class Sample{

public static void main(String args[]) {

mt a=5, b=3;

. E:\>javac Sample. java
< — .

if{a <b)a 0; E:\%java Sample

else b = 0; A

System.out.println(" a=" + a);
System.out.println(" b="+ b);
}
}

95

« |f statement can be controlled using a boolean variable.
- E.g.

boolean dataAvailable;

// ...

if (dataAvailable) //if dataAvailable 1s true
ProcessData(); //call this function

else

waitForMoreData(); //call this function

96

Prepared by Sharika T R, SNGCE

* A nested if is an if statement that is the inside (target of)
another if or else.
* The else statement always refers to the

— nearest if statement that is within the same block as the else
and that is not already associated with an else.

97

i@ ==10)

{

1f(§ < 20) a =b;

if(k > 100) ¢ =d; // this 1f 1s

else a=¢; // associated with this else
}

else a = d; // this else refers to 1f(1 == 10)

Prepared by Sharika T R, SNGCE

The if-else-if Ladder

« A common programming construct that is based upon a
sequence of nested ifs is the if-else-if ladder.
if(condition)
statement;
else 1f(condition)
statement;
else 1f(condition)

statement;

else

statement; 99

» The if statements are executed from the top down.

» As soon as one of the conditions controlling the if is true,
the statement associated with that if is executed, and the
rest of the ladder is bypassed.

* |f NONE of the conditions is true, then the final else
statement will be executed.

* The last else acts as a default condition; that is, if all other
conditional tests fail, then the last else statement is
performed.

100

Prepared by Sharika T R, SNGCE

J/ Demonstrate if-else-if statements.
class IfElse |
public static woid main(String argsll) |
int month = 4; f/ April
String season;

if (month == 12 || month == 1 || month == Z2)
season = "Winter™;

else if(month == 3 || month == 4 || month == 5)
season = "Spring";

else if (month == | month == 7 || month == 8)
season = "Summer";

else if {month == || month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

System.out .println("April i=s in the " + season + "."):

}
}
Here is the output produced by the program:

April 1s in the Spring. 101

Control™
statements

<

(switch) In Java

.
~

Prepared by Sharika T R, SNGCE

Switch statement

» The switch statementis Java’'s multiway branch
statement.

* Itis an better alternative than a large series of if-else-if
statements.

103

switch (expression)
{
case valuel:
// statement sequence
break;
case value2:
// statement sequence

break;

case valueN:
// statement sequence
break;

default:

// default statement sequence
104
}

Prepared by Sharika T R, SNGCE

switch(expression){.....}
» The expression inside switch must be of type byte, short,
int, or char;

— each of the values specified in the case statements must be of
a type compatible with the expression. (An enumeration value
can also be used to control a switch statement)

105

Working of switch

» The value of the expression inside switch is compared
with each of the literal values in the case statements.

— If a match is found, the code sequence following that case
statement is executed.

— If none of the constants in the case matches the value of the
expression, then the default statement is executed.

— default statement is optional.

— If no case matches and no default is present, then no further
action is taken.

106

Prepared by Sharika T R, SNGCE

* The break statement is used inside the switch to
terminate a statement sequence.

 When a break statement is encountered, execution
branches to the first line of code after the entire switch
statement.

» This has the effect of “jumping out” of the switch.

107

// A simple example of the switch.
class SampleSwitch {
public static void main(8tring args[]) {
for{int i=0; i<&;: i++)
switch(i) {

case 0D:
System.out.println("i is zero."): The output produced by this program is shown here:
break;
1 1s zero.
case 1: i ie one
Eystem.out.printlin("i is one."); .
break: 1 is two.
caze 2. i is three.
g t- £ intin("i is t " i is greater than 3.
ystem.out.println("i is two."); 1 is greater than 3.
break;
case 3:
System.out.println("i is three.");
break;
default:

System.out.println("i is greater than 3.");

}
}
}

108

Prepared by Sharika T R, SNGCE

// In a switch, break statements are optional.

class MissingBreak {
public static void main(String args(l) {
for(int i=0; i<12; i++) This program generates the following output:
switchi(i) {
case D: 1 15 less than 5
case 1: 1 18 less than &
case 2: 1 15 less than 5
case 3: 1 15 less than 5
case 4: 1 is less than &
System.out.println("i is less than 5"); 1 is less than 10
break; 1 18 less than 10
case 5: 1 is less than 10
case 6: 1 1s less than 10
case T: 1 is less than 10
case 8: 1 is 10 or more
case 9: 1 i=s 10 or more
System.out.println("i is less than 10");
break;
default:
System.out.println("i is 10 or more");
}
} 109
}

Nested switch Statements

» We can use a switch as part of the statement sequence
of an outer switch. This is called a nested switch
switch(count) {

case 1:
switch(target) { // mested switch
case (-
Svstem.out.println(“target is zero");
break:;
case 1: // no conflicts with outer switch
Svstem out.println("target is one"):
break:
¥
break;

8 110
case 2:// ... }

Prepared by Sharika T R, SNGCE

Features of the switch statement

The switch differs from the if in that switch can only test for
equality, whereas if can evaluate any type of Boolean expression.

— switch looks only for a match between the value of the expression inside
switch and one of its case constants.

No two case constants in the same switch can have identical
values.

— But a switch statement and an enclosing outer switch can have case
constants in common.

A switch statement is usually more efficient than a set of nested
ifs.

111

Switch(features)

When Java compiler compiles a switch statement, it will
inspect each of the case constants and create a “jump
table” that it will use for selecting the path of execution
depending on the value of the expression.

So a switch statement will run much faster than the
equivalent logic coded using a sequence of if-elses.

The compiler can do this because it knows that the case
constants are all the same type and simply must be
compared for equality with the switch expression.

The compiler has no such knowledge of a long list of if
expressions 112

Prepared by Sharika T R, SNGCE

Iteratlon
~ statements In

Java
~ (while)

lteration Statements

LA iteration statements or loop repeatedly executes the
same set of instructions until a termination condition is
met.

QJava’s iteration statements (looping statements) are
v for

v'while

v do-while

114

Prepared by Sharika T R, SNGCE

» The while loop is Java’s most fundamental loop statement. It is
ENTRY CONTROLLED loop.

— The statements inside the body of while is executed only if the condition
inside while is true.

* It repeats a statement or block while its controlling expression is
true.

» General form:
while (condition)
{
// body of loop

} 15

Working of while

while (condition)

{
// body of loop

}

* The condition can be any Boolean expression.

— The body of the loop will be executed as long as the conditional
expression is true.

— When condition becomes false, control passes to the next line
of code immediately after the loop.

116

Prepared by Sharika T R, SNGCE

» The curly braces are not needed if only a single statement
is being repeated.

while(condition)
Statement;

17

// Demonstrate the while loop.

class Whileeg {
.)))) E:\1>j Whil
public static void main(String args[]) { EESn jgva Whilees

E:\1> javac Whileeg. java

tick
n-; ti Ck
tick

tick 9

char ch="a’ tick 8
. tick 7
while (ch=="2") { tick 6
) . tick S
System.out.println("tick " + n); EE=I g

z

1

118

Prepared by Sharika T R, SNGCE

» The body of the while (or any other of Java’s loops) can
be empty.
— This is because a null statement (one that consists only of a
semicolon) is syntactically valid in Java.

while(condition) ;

Here if condition is true no statement is executed as part of

while
119
class Whileeg {
. OUTPUT
public static void main(String args|]) tick 10
{ tick 10
tick 10

floatn=10.5,

while(n > 0)

{

System.out.println("tick " + n);

J iNFINITE LOOP

120

Prepared by Sharika T R, SNGCE

Iteratlon

_ statements In
Java

~ (do-while) -

* The do-while loop always executes its body at least
once, because its conditional expression is at the bottom
of the loop.

do
{

//statements

}

while(condition);

122

Prepared by Sharika T R, SNGCE

Working of do-while

do-while is EXIT CONTROLLED loop.
do

{
//statements

}

while(condition);

1.Initially the statements inside the do-while loop is
executed

2.then only the condition inside while is checked.

3.Then the loop is executed only if that condition is true.
— That is condition is checked only during exit from do-while Iooff.3

while LOOP do while LOOP
A while loop is an entry controlled A do while loop is an exit control loop
loop - it tests for a condition prior to | - it tests for a condition after running
running a block of code a block of code

A while loop runs zero or more times | A do while loop runs once or more
Body of loop may never be executed | times but at least once
Body of loop is executed at least once

The variables in the test condition It is not necessary to initialize the
must be initialized prior to entering variables in the test condition prior to
the loop structure. entering the loop structure.
while (condition) do {
statements
statements } while (condition);
3

Table 6 - Difference between while and do while loop

124

Prepared by Sharika T R, SNGCE

lteration
statements In
Java

~ (for)

* |tis an iteration statement public class SumNatural {
° |()()F)ir]£; public static void main(String[] args) {

int num = 100, sum = O;

for(int i = 1; 1 <= num; ++i)

for (imtialization; condition; iteration) { ¢
// body :
} System.out.println("Sum = * + sum);
H
F
Output

sum = 5050

Prepared by Sharika T R, SNGCE

Working of for loop

* When the loop first starts, the initialization portion of the loop is executed. It
acts as a loop control variable (counter).

— the initialization expression is only executed once.
* Next, condition is evaluated.(Boolean expression)
— It usually tests the loop control variable against a target value.
— If this expression is true, then the body of the loop is
executed.
— If it is false, the loop terminates.
* Next, the iteration portion of the loop is executed.
— increments or decrements the loop control variable.

* Next, condition is evaluated.

« And the process continues until condition becomes false 127

for(;;)

{ INFINITE LOOP

/] .

128

Prepared by Sharika T R, SNGCE

The For-Each Version of the for Loop

for(type var : collection)
statement-block;

* Here, type specifies the type and var specifies the name
of an iteration variable that will receive the elements from
a collection, one at a time, from beginning to end.

» The collection being cycled through is specified by
collection

129

mtnums[] ={1,2,3,4,5,6,7,8,9,10 };

mt sum = 0;

N =

for(int x: nums)

O©oOoO~NOOOG AW

System.out.println(x); 10

» With each pass through the loop, x is automatically given
a value equal to the next element in nums.
— Thus, on the first iteration, x contains 1;
— on the second iteration, x contains 2; and so on.

* Not only is the syntax streamlined, but it also prevents
boundary errors. 130

Prepared by Sharika T R, SNGCE

Nested loops

/l Loops may be nested.
class Foreg2{

OUTPUT

public static void main(String argsy]) { =0j=0 i=0j=1 i=0j=2
int i, j; i=1j=0 i=1j=1 i=1j=2

P i=2j=0 i=2j=1 i=2j=2
for(i=0; i<4; i++) { i=3j=0 =3 =1 i=3 j=2

for(j=0; j<3; j++)
System.out.print("i="+i+" j="+j + "\t\t");
System.out.printin();

}

}

}

131

/I Loops may be nested.
class Foreg2{

OUTPUT
public static void main(String args][]) { 0 0 0
int i, j; O S
for(i=0; i<4; i++) { 3 3 3

for(j=0; j<3; j++)
System.out.print(i +"\t\t");
System.out.printin();

}

}

}

132

Prepared by Sharika T R, SNGCE

In Java -

Jump Statements

LJava supports three jump statements:
v'break

v'continue

v'return

134

Prepared by Sharika T R, SNGCE

break statement

 Three uses.

v'First it terminates a statement sequence in a switch
statement.

v'Second, it can be used to exit a loop.
v'Third, it can be used as a “civilized” form of goto.

135

// Using break to exit a loop.
class BreakLoop {

public static void main(String args[]) { QgTPUT
for(int i=0; i<6; i++) 1
e i 2
{ if(i == 3) :_oop complete.
break; // terminate loop ifiis 3

System.out.printin("i: " + i);

}

System.out.printin("Loop complete.");

} 136
}

Prepared by Sharika T R, SNGCE

Using break as a Form of Goto

» By using this form of break, you can, for example, break
out of one or more blocks of code.

* The general form of the labeled break statement s :
break /abel;

137

// Using break as a civilized form of goto.
class Breakeg {

ublic static void main(String args
’ boolean t = true; (geresll! OuTPUT
L ’ Before the break.
first: { After second block..
second: {
third: {

System.out.printin("Before the break.");
if(t) break second; /break of second block
System.out.printin("This won't execute");

}

System.out.printin("This won't execute");

}

System.out.printin(“After second block.");
} 138

1}

Prepared by Sharika T R, SNGCE

continue statement

 In while and do-while loops, a continue statement causes
control to be transferred directly to the conditional
expression that controls the loop.

* |In a for loop, control goes first to the iteration portion of
the for statement and then to the conditional expression.

» For all three loops, any intermediate code after continue is
bypassed(skipped).

139

/I Using break to exit a loop.
class continueeg {

public static void main(String args[]) { OUTPUT
for(int i=0; i<6; i++) iig’
1.
{ i 2
if(i==3) it 4
continue; // skip remaining stmts ifiis 3 tosop complete.
// continue loop.control goes to iteration

System.out.printin("i: " + i);

}

System.out.printin("Loop complete.");

} 140

Prepared by Sharika T R, SNGCE

return statement

The return statement is used to explicitly return from a method.

— The return causes program control to transfer back to the caller
of the method.

When return statement is executed the method terminates.
The return causes execution to return to the Java run-time system

Methods that have a return type other than void return a value to
the calling method(function)

return value;

— Here, value is the value is returned to the calling function

141

// Demonstrate return.
class Return {
_ _ _ _ _ OUTPUT
public static void main(String argsl]) { Before the return
boolean t = true;
System.out.printin("Before the return.");
if(t) return;
System.out.printin("This won't execute.");

142

Prepared by Sharika T R, SNGCE

» An array is a group of like-typed(same type) variables that
are referred to by a common name.

» Arrays of any type can be created
« Arrays may have one or more dimensions.

A specific element in an array is accessed by its index.

— Index means position It starts from O.
* Index of first element is 0, second element is 1 etc.

144

Prepared by Sharika T R, SNGCE

One-Dimensional Arrays

create an array variable of the desired type.
Declaration syntax 1

type variablename] |;

E.g. inta[];

Declaration syntax 2

type[] variablename;

The following two declarations are equivalent:

int a[];

int[]a;

Here this declaration means that a is an array variable, but no
array actually exists. No space is allocated for it in memory

145

» We have to link array with an actual, physical array of
integers.

+ So we must allocate space using new and assign it to
array variable .
— new is a special operator that allocates memory.
variable=new type[size];
E.g.
nt af]; int a[]=new int[12];
a=new int[12];

— After this statement executes, variable a will refer to an array of
12 integers e

Prepared by Sharika T R, SNGCE

» Obtaining an array is a two-step process.
1. First, we must declare a variable of the desired array type.

2. Second, we must allocate the memory that will hold the
array, using new, and assign it to the array variable

* In Java all arrays are dynamically allocated.
* |tis possible to combine the declaration of the array
variable with the allocation.

E.g. int a[];

int a= new int[12]; < a= new int[12];

147

Store value in array

class Array {
public static void main(String argsl])

{
int a[];
a = new int[4];
a[0] = 1;
a[1] = 3;
a[2] = 2;
a[3]=5;

Prepared by Sharika T R, SNGCE

// Demonstrate a one-dimensicnal array.
class Array {
public static void main(String args([]) {
int month daysl];
month_days = new int[12];
month _days [0] = 31;

month _days [1] = 28;
month days [2] = 31;
month days [3] = 30;
month _days [4] = 31;
month _days [5] = 30;
month _days [6] = 31;
month _days[7] = 31;
month days[8] = 30;
month _days[9] = 31;

month days [10] = 20;
month _days[11] = 31;
System.out.println("April has " + month_days[3] + " days.");

149

Array initialization

« Arrays can be initialized(give values) when they are declared.

» An array initializer is a list of comma-separated expressions
surrounded by curly braces.

* No need for new operator
class AutoArray {
public static void main(String args|])

intaf] ={1,3,2,5};

150

Prepared by Sharika T R, SNGCE

« If you try to access elements outside the range of the
array (negative numbers or numbers greater than the
length of the array), it will cause a run-time error.

- Eg

mt al[]=new int[10];
al-3]=5;//ERROR
all1]=7; //ERROR ARRAY INDEX OUT OF BOUNDS

151

// Average value In an array.
class Average {

public static void main(String args|])

{
double nums|] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
nt 1;
for(1=0; 1<5; 1++)
result = result + numsli];
System.out.println("Average is " + result / 5);

}

Prepared by Sharika T R, SNGCE

mt[] numl, nums2, nums3; // create three arrays

— creates three array variables num1,num2,numa3 of type int.
 |tis the same as writing

it numl|[], nums2[], nums3]];

153

Multidimensional Arrays

« Multidimensional arrays are actually arrays of arrays.

» To declare a multidimensional array variable, specify each
additional index using another set of square brackets.

« E.g 2 D array declaration
mt b[][]= new mt[4][5];

This allocates a 4 by 5 array and assigns it to variable b.
4 rows and 5 columns

154

Prepared by Sharika T R, SNGCE

Right index determines column.

T N

[o[o] | [e][x]| [o][2]| [e] 21| [o] 4]

Left index BV CIH BN (RN RV EX ER[ER N RYIEY

determines
rOwW.

(210 | IC] |] B 2]

(310 | IO | I { B 0]

Given: inttwoD [| [] = new int[4] [5];

FIGURE 3-1 A conceptual view of a 4 by 5, two-dimensional array 155

» The following declarations are also equivalent:
char twod[][] = new char[3][4];
char[][] twod = new char[3][4];

156

Prepared by Sharika T R, SNGCE

* When you allocate memory for a multidimensional array,
you need only specify the memory for the first (leftmost)
dimension.

int a[][] = new int[2][];

a[0] = new int[3]; int a[][]= new int[2][3];

a[1] = new int[3];

— Here a is 2D array with two rows. First row a[0] has 3 columns.

Second row a[1] has 3 columns. 157

class T
public st
int a[][]= new int[2][3];

inti, j, k=0;
for(i=0; i<2; i++)
(
for(=0: <3 ++) OUTPUT
(
alil] = k 012
ket+; 345
)
)

for(i=0; i<2; i++)
{ for(j=0; j<3; j++)
{System.out.print(a[i][j] + " ");}
System.out.printin();
1}

158

Prepared by Sharika T R, SNGCE

* When you allocate dimensions manually, you do not need
to allocate the same number of elements for each

dimension.
- E.g.
mt all[] = new mnt[2][];
al0] = new nt[1];
al[l] = new nt|2];
— Here array a has 2 rows.
— First row a[0] has 1 column.

— Second row a[1] has 1 column.

159

// Manually allocate differing size second dimensions.
class TwoDAgain {
public static void main(String args[l) {
int twoD[] [1 = new int[4] [];
twoD [0] new int[1];

twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

int i, j, k = 0;

for(i=0; i=4;: i++)
for(j=0; jei+l; j++) {

twoD[1i] [7] = k;
kK++;

}

for{i=0; ied; i++) |
for(j=0; Jj<i+l; j++)

[o]fe]

[1][0]

E[EY

[2][e]

EIIEY

=[]

[3][o]

EX|EY

[2][2]

EllE

—

System.out.print(twoD [1][j] + " ");
System.out.println() ;
} I This program generates the following output:
!
0
12
345
&7 89

160

Prepared by Sharika T R, SNGCE

Multidimensional array initialization

» Enclose each dimension’s initializer(values) within its own

set of curly braces.

 We can use expressions as well as literal values inside

of array initializers.
- Eg.
mt a[l[1={{1,2,3} , {3,4,5}} ;

161

public static void main(String argsl]) {
double m[][] = {
{0*0, 1*0, 2*0, 30 }, { 0*1, 1*1, 2*1, 3*1 },
{0*2, 1*2, 2*2, 3*2 }, { 0*3, 1*3, 2*3, 3*3 }
%
int i, j;
for(i=0; i<4; i++) {
for(j=0; j<4; j++)

{System.out.print(m[i][j] + " ");}
System.out.printin();
1

class _

OUTPUT

0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0
0.0 3.0 6.0 9.0

162

Prepared by Sharika T R, SNGCE

String Class
N

String str = "this 1s a test";

String is a class.
It can defines an object.
The String type is used to declare string variables

A quoted string constant(E.g. “hello”) can be assigned to a String
variable.

A variable of type String can be assigned to another variable of
type String.
We can use an object of type String as an argument to printin()

E.g.
Here, str is an object of type String.
It is assigned the string “this is a test”.

System.out.println(str); This string is displayed by the println() statement.

Prepared by Sharika T R, SNGCE

class Sample {

public static void main(String args|])

{ OUTPUT
String s=“Hello” e
System.out.print(s);

}

165

 In Java, string is basically an object that represents
sequence of char values.

» An array of characters works same as Java string.

* For example:

char[] ch={'H’,’¢’,I’,T’,’0’};

String s=new String(ch);
/*This statement converts character array ch to string and store
1 string object s.*/

This is same as

String s=“Hello"; //creating string by java string Iiteral

166

Prepared by Sharika T R, SNGCE

String methods

* length()
— The length of a string can be found with the length() method.
class Sample {

public static void main(String args|])

{ OUTPUT
String s=“Hello”; Length=5

System.out.print(“Length=",s.length());
}

167

» toUpperCase() and toLowerCase()
— To convert from lower to upper and upper to lower respectively
class Sample {

public static void main(String args|])

{ OUTPUT
.) ., HELLO WORLD
String s=“Hello World”; hello world

System.out.println(s. toUpperCase());
System.out.println(s. toLowerCase());

}

168

Prepared by Sharika T R, SNGCE

* indexOf()

— The indexOf() method returns the index (the position) of the first
occurrence of a specified text in a string (including whitespace)

class Sample {

public static void main(String args|])

OUTPUT
{ 2
String s=“I am fine.I am ok™;

System.out.println(s.indexOf(“am”));

}

169

« String concatenation

— Method 1:The + operator can be used between strings to combine them.
This is called concatenation

— Method 2:We can use concat() method to concatenate two strings.
class Sample {
public static void main(String args|])

{ OUTPUT
Sachin Tendulkar

String s1="Sachin ";
String s2="Tendulkar";
String s3=s1+s2;
System.out.println(s3);//Sachin Tendulkar

1}

170

Prepared by Sharika T R, SNGCE

* If we add a number and a string, the result will be a string
concatenation.

class Sample {

public static void main(String args|])

(OUTPUT
String s1=“10 7, s2=“127; ::8::%
mt a=13;

System.out.println(s1+s2);

System.out.println(s1+a);

}

171

Vector Class
In

Java

Prepared by Sharika T R, SNGCE

Vector implements a dynamic array
Vector is synchronized.

Vector contains many legacy methods that are not part of the
collections framework.

Vector proves to be very useful if you don't know the size of the
array in advance or you just need one that can change sizes over
the lifetime of a program.

173

 All vectors start with an initial capacity(size).

« After this initial capacity is reached, the next time that you
attempt to store an objectin the vector, the vector
automatically allocates space for that object plus extra
room for additional objects.

» The amount of extra space allocated during each
reallocation is determined by the increment that you
specify when you create the vector.

* If we don’t specify an increment, the vector's size is
doubled by each allocation cycle.

174

Prepared by Sharika T R, SNGCE

* Vector is declared like this:
class Vector<E>
* Here, E specifies the type of element that will be stored.

* \ector constructors are
Vector()

Vector(int size)
Vector(int size, int ncr)
Vector(Collection<? extends E> ¢)

175

» Vector() creates a default vector, which has an initial size of 10.

» Vector(int size) creates a vector whose initial capacity is specified
by size.

» Vector(int size, int incr) creates a vector whose minitial capacity is
specified by size and whose increment is specified by incr.
o The increment specifies the number of elements to allocate each time that

a vector is resized upward.

» Vector(Collection<? extends E> c) creates a vector that contains

the elements of collection c.

176

