
CST281

Object Oriented Programming

MODULE 2

Core Java Fundamentals

Prepared by Sharika T R, SNGCE

2

Syllabus

Primitive Data types - Integers, Floating Point Types, Characters, Boolean.

Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.

Operators - Arithmetic Operators, Bitwise Operators, Relational Operators,

Boolean Logical Operators, Assignment Operator, Conditional (Ternary)

Operator, Operator Precedence.

Control Statements - Selection Statements, Iteration Statements and Jump

Statements.

Object Oriented Programming in Java - Class Fundamentals, Declaring

Objects, Object Reference, Introduction to Methods, Constructors, this

Keyword, Method Overloading, Using Objects as Parameters, Returning

Objects, Recursion, Access Control, Static Members, Final Variables, Inner

Classes, Command-Line Arguments, Variable Length Arguments.

DATA TYPES, OPERATORS & CONTROL

STATEMENTS

3

Prepared by Sharika T R, SNGCE

DATA TYPES

• Data type defines the values that a variable can take, for

example if a variable has int data type, it can only take

integer values.

• Data types specify the different sizes and values that can

be stored in the variable.

• There are two types of data types in Java:

– Primitive data types

– Non-primitive data types

4

5

Prepared by Sharika T R, SNGCE

Primitive Data Types (Fundamental Data Types)

• A primitive type is predefined by the language and is

named by a reserved keyword.

• Java defines eight primitive types of data: byte, short, int,

long, char, float, double, and boolean.

6

Integers: byte, short, int, and long, which are for whole-valued signed

numbers.

Floating-point numbers : float and double, which represent numbers with

fractional precision.

Characters: char, which represents symbols in a character set, like letters

and numbers.

Boolean: boolean, which is a special type for representing true/false values.

Integers

• Java defines four integer types: byte, short, int, and long

7

Prepared by Sharika T R, SNGCE

• byte:

– The smallest integer type is byte.

– This is a signed 8-bit. Variables of type byte are especially

useful when you’re working with a stream of data from a
network or file.

– when you’re working with raw binary data that may not be
directly compatible with Java’s other built-in types.

– Byte variables are declared by use of the byte keyword.

– For example, the following declares two byte variables called b

and c:

byte b, c; 8

• Short is a signed 16-bit type.

– you can use a short to save memory in large arrays, in situations where

the memory savings actually matters.

– Example : short s;

• The most commonly used integer type is int.

– In addition to other uses, variables of type int are commonly employed to

control loops and to index arrays.

– Example: int a;

• long

– is a signed 64-bit type and is useful for those occasions where an int type

is not large enough to hold the desired value.

– Example: long a;
9

Prepared by Sharika T R, SNGCE

10

Floating-point numbers

• Floating-point numbers, also known as real numbers, are

used when evaluating expressions that require fractional

precision.

• The type float specifies a single-precision value that uses

32 bits of storage.

• Variables of type float are useful when you need a

fractional component, but don’t require a large degree of
precision.

• Example: float highTemp, lowTemp;

 11

Prepared by Sharika T R, SNGCE

Double

• Double precision, as denoted by the doublekeyword, uses

64 bits to store a value.

• When you need to maintain accuracy over many iterative

calculations, or are manipulating large-valued numbers,

double is the best choice.

• Example : double pi, r, a;

12

13

Prepared by Sharika T R, SNGCE

Characters

• In Java, the data type used to store characters is char.

• Java uses Unicode to represent characters

• At the time of Java's creation, Unicode required 16 bits.

Thus, in Java char is a 16-bit type.

• Example: char letterA= 'A‘;

14

15

Prepared by Sharika T R, SNGCE

Booleans

• Java has a primitive type, called boolean, for logical

values.

• It can have only one of two possible values, true or false.

• This is the type returned by all relational operators, as in

the case of a < b.

• Example: boolean bool;

16

17

Prepared by Sharika T R, SNGCE

LITERALS

18

Literals

• A constant value in Java is created by using a literal

representation.

1. Integer Literals

2. Floating-Point Literals

3. Boolean Literals

4. Character Literals

5. String Literals

19

Prepared by Sharika T R, SNGCE

Integer Literals

• Any whole number value is an integer literal.

• Examples are 1, 2, 3, and 42

• There are three bases which can be used in integer

literals

1. Decimal(base 10)

2. octal (base 8)

3. hexadecimal (base 16).

20

• Normal decimal numbers

– cannot have a leading zero.

– can use digits from 0 to 9

• Octal values

– are denoted by a leading zero.

– can use digits from 0 to 7

– E.g 012, 0356

• Hexadecimal constant

– are denoted with a leading zero-x, (0x or 0X).

– use digits from 0 to 9 and letters A through F (or a through f) E.g.
0x234, 0X3B5c

21

Prepared by Sharika T R, SNGCE

• An integer literal can always be assigned to a long

variable.

– Append an upper- or lowercase L to the literal

• 9223372036854775807L

• integer can also be assigned to a char as long as it is

within range.

• literal value is assigned to a byte or short variable as

long as it is within range.

22

Floating-Point Literals

• Floating-point numbers represent decimal values with a fractional

component.

• Standard notation consists of a whole number component

followed by a decimal point followed by a fractional component.

– E.g. 3.14159, 2.0

• Scientific notation uses a standard-notation floating-point number

plus a suffix (that specifies a power of 10 by which the number is

to be multiplied.)

– The exponent is indicated by an E or e followed by a

decimal number, which can be positive or negative

– E.g. 6.022E23, 314159E–05, 2e+100.

23

Prepared by Sharika T R, SNGCE

• Floating-point literals in Java are double precision by

default.

• To specify a float literal, we must append an F or f to the

constant.

• We can also explicitly specify a double literal by

appending a D or d.

• The default double type consumes 64 bits of storage,

while the less-accurate float type requires only 32 bits

24

Boolean Literals

• Boolean literals are simple.

• There are only two logical values that a boolean value can

have,

– true , false.

• The values of true and false do not convert into any

numerical representation.

• The true literal in Java does not equal 1

• The false literal in Java does not equal 0.

25

Prepared by Sharika T R, SNGCE

Character Literals

• Characters in Java are indices into the Unicode character

set.

• They are 16-bit values that can be converted into integers

– and manipulated with the integer operators, such as the

addition and subtraction operators.

• A literal character is represented inside a pair of single

quotes.

– All of the visible ASCII characters can be directly entered inside

the quotes, such as ‘a’, ‘z’, and ‘@’.

26

Escape sequences

• For characters that are impossible to enter directly, there are several escape

sequences that allow you to enter the character you need

• ‘\n’ for the newline character.
• ‘\’’ for the single-quote character

27

Prepared by Sharika T R, SNGCE

String Literals

• String literals in Java are specified like they are in most

other languages—by enclosing a sequence of characters

between a pair of double quotes

• Examples of string literals are

– “Hello World”
– “two\nlines”
– “\”This is in quotes\””

28

Variables In Java

29

Prepared by Sharika T R, SNGCE

Variables In JAVA

• Variable in Java is a data container that stores the data

values during Java program execution.

• Variable is a memory location name of the data.

• variable="vary + able" that means its value can be

changed.

• In order to use a variable in a program we need to

perform 2 steps

1. Variable Declaration

2. Variable Initialization
30

• All variables must be declared before they can be used.

• The basic form of a variable declaration is :

type identifier [[= value][, identifier [= value] ...] ;

• The type is one of Java’s atomic types, or the name of a
class or interface.

• The identifier is the name of the variable.

• Square bracket denote that =Value is optional in

declaration.

31

Prepared by Sharika T R, SNGCE

32

33

Prepared by Sharika T R, SNGCE

• Java allows variables to be initialized dynamically, using

any expression valid at the time the variable is declared.

34

Variables In Java

35

Prepared by Sharika T R, SNGCE

The Scope and Lifetime of Variables

• All of the variables used have been declared at the start

of the main() method.

• Java allows variables to be declared within any block.

– a block begins with an opening curly brace and ended by a

closing curly brace.

– A block defines a scope.

• A block begins with{ and end with }

• A scope determines what objects are visible to other parts

of your program.

• Scope also determines the lifetime of those objects.

36

• Two major scopes are

– Scope defined by a class

– Scope defined by a method.

• Variables declared inside a scope are not visible (that is,

accessible) to code that is defined outside that scope.

– Local variable

37

Prepared by Sharika T R, SNGCE

The Scope and Lifetime of variables(contd.)

• Scopes can be nested.

– Each time you create a block of code, we are creating a new,

nested scope.

– The outer scope encloses the inner scope.

– This means that objects declared in the outer scope will be

visible to code within the inner scope.

{//outer

{//inner

{//innermost

}

}

}

38

The Scope and Lifetime of variables(contd.)

// This fragment is wrong!

count = 100; // cannot use variable before it is declared!

int count;

• Variables are created when their scope is entered, and

destroyed when their scope is left.

– This means that a variable will not hold its value once it has

gone out of scope.

39

Prepared by Sharika T R, SNGCE

• Variable can be reinitialized each time it enters the block

in which it is declared
class LifeTime {

public static void main(String args[]) {

int x;

for(x = 0; x < 2; x++)

{

int y = -1; // y is initialized each time block is entered

System.out.println("y is: " + y); // this always prints -1

y = 100;

System.out.println("y is now: " + y);

}

} }
40

• Although blocks can be nested, you cannot declare a variable to

have the same name as one in an outer scope.

// This program will not compile

class ScopeErr {

public static void main(String args[])

{ int bar = 1;

 { // creates a new scope

 int bar = 2; // Compile-time error

 // bar already defined in outer scope!

 }

}

}

41

Prepared by Sharika T R, SNGCE

Variables In Java

42

Type Conversion and Casting

• If the two types are compatible, then Java will perform

the conversion automatically(implicitly).

– it is always possible to assign an int value to a long variable.

• The conversion between incompatible types are to be

done explicitly.

43

Prepared by Sharika T R, SNGCE

Java’s Automatic Conversions

• When one type of data is assigned to another type of

variable, an automatic type conversion will take place if

the following two conditions are met:

– The two types are compatible.

– The destination type is larger than the source type.

Destination = source

(same type or larger)

• When these two conditions are met, a widening

conversion takes place.

44

Java’s Automatic Conversions(contd.)

• For widening conversions, the numeric types, including

integer and floating-point types, are compatible with each

other.

– No automatic conversions from the numeric types to char or

boolean.

• Java also performs an automatic type conversion when a

literal integer constant is stored into variables of type byte,

short, long, or char.

45

Prepared by Sharika T R, SNGCE

46

Casting Incompatible Types

• If we want to assign an int value to a byte variable.

– This conversion will not be performed automatically, because a

byte is smaller than an int.

byte variable=integer

(small) (large)

• This is called narrowing conversion.

• To create a conversion between two incompatible types,

we must use a cast.

47

Prepared by Sharika T R, SNGCE

• A cast is simply an explicit type conversion. It has this general

form:

 (target-type) value

– target-type specifies the desired type to which value is to be

converted.

int a;

byte b;

b = (byte) a;

• If the integer’s value is larger than the range of a byte, it will be
reduced to modulo (the remainder of an integer division) by the

byte’s range(256).

48

• A different type of conversion will occur when a floating-

point value is assigned to an integer type: truncation.

– If the value 1.23 is assigned to an integer, the resulting value

will simply be 1.

 int a=1.23; // here variable a stores only 1

 // .23 will have been truncated

49

Prepared by Sharika T R, SNGCE

• If the size of the whole number component is too large to fit into

the target integer type, then that value will be reduced modulo the

target type’s range.
E.g.

byte b;

int i = 257;

b=(byte) i;

Here byte(-128 to 127) is smaller than 257, so the value stored in b is

257 mod 256=1

• When the large value is cast into a byte variable, the result is the

remainder of the division of value by 256

50

51

Prepared by Sharika T R, SNGCE

Automatic Type Promotion in Expressions

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c; // conversions may occur in expressions.

• Here intermediate term a * b (40*50=2000) exceeds the range of

its byte operands(-128 to 127) a and b.

• To handle this kind of problem, Java automatically promotes each

byte, short, or char operand to int when evaluating an expression.

• So no error.

• Variable d will contain 20

52

53

Prepared by Sharika T R, SNGCE

The Type Promotion Rules

• First, all byte, short, and char values are promoted to int.

• If one operand is a long, the whole expression is

promoted to long.

• If one operand is a float, the entire expression is

promoted to float.

• If any of the operands is double, the result is double.

54

55

Prepared by Sharika T R, SNGCE

Variables In Java

56

Operators

• An operator is a symbol that tells the computer to perform

• certain mathematical or logical manipulation.

• Java operators can be divided into following categories:

1. Arithmetic Operators

2. Relational Operators

3. Bitwise Operators

4. Logical Operators

5. Assignment Operators

6. conditional operator (Ternary)
57

Prepared by Sharika T R, SNGCE

Arithmetic Operators

58

59

Prepared by Sharika T R, SNGCE

The Modulus Operator

• The modulus operator, %, returns the remainder of a

division operation.

• It can be applied to floating-point types as well as integer

types

60

Arithmetic Compound Assignment Operators

• Java provides special operators that can be used to

combine an arithmetic operation with an assignment.

• There are compound assignment operators for all of the

arithmetic, binary operators.

 var = var op expression;

61

a = a + 4; a += 4;

var op= expression;

Prepared by Sharika T R, SNGCE

62

Increment and Decrement

• The ++ and the – –

are Java’s increment
and decrement

operators

• The increment

operator increases its

operand by one.

• The decrement

operator decreases its

operand by one

63

Prepared by Sharika T R, SNGCE

Pre-Increment Post increment(Prefix/Postfix)

• In prefix form the operand is incremented or decremented

before the value is obtained for use in the expression.

• In postfix form the previous value is obtained for use in

the expression, and then the operand is modified.

64

65

Prepared by Sharika T R, SNGCE

Bitwise operators

66

Bitwise logical oprators

67

Prepared by Sharika T R, SNGCE

Examples

68

Left shift

• The left shift operator, <<, shifts all of the bits in a value to the

left a specified number of times.

• It has this general form: value << num

• num specifies the number of positions to left-shift the value in

value.

• << moves all of the bits in the specified value to the left by the

number of bit positions specified by num

69

Prepared by Sharika T R, SNGCE

Right shift

• Each time you shift a value to the right, it divides that value by

two—and discards any remainder.

• When you are shifting right, the top (leftmost) bits exposed by the

right shift are filled in with the previous contents of the top bit.

• This is called sign extension and serves to preserve the sign of

negative numbers when you shift them right. For example, –8 >>

1 is –4

70

71

Prepared by Sharika T R, SNGCE

Boolean Logical Operators

72

int a = 4;

int b = 1;

boolean c = a < b;//c contains false. 4 is not less than 1

Here the result of a<b (which is false) is stored in c.

E.g.

int done;

if(!done) ... // Valid in C/C++

if(done) ... // but not valid in Java.

73

Prepared by Sharika T R, SNGCE

• The logical Boolean operators, &, |, and ^, operate on

boolean values in the same way that they operate on

the bits of an integer.

74

Short-Circuit Logical Operators

• Secondary versions of the Boolean AND and OR

operators, and are known as short-circuit logical

operators.

• The OR operator results is true when A is true, no matter

what B is. Similarly, the AND operator results in false

when A is false, no matter what B is.

• If you use the || and && forms, rather than the | and &

forms of these operators, Java will not bother to evaluate

the right-hand operand when the outcome of the

expression can be determined by the left operand alone.

75

Prepared by Sharika T R, SNGCE

• E.g

if (denom != 0 && num / denom > 10)

• Here if denom is 0 the second expression is not validated

– So there is no risk of causing a run-time exception when denom

is zero.

• If this line of code were written using the single & version

of AND, both sides would be evaluated, causing a run-

time exception when denom is zero.

76

Relational operators

77

Prepared by Sharika T R, SNGCE

Assignment Operator

• var = expression;

• Here, the type of var must be compatible with the type of

expression.

• It allows you to create a chain of assignments

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

78

Ternary (conditional or three-way) operator

• The ? Operator has this general form:

expression1 ? expression2 : expression3

• Here, expression1 can be any expression that evaluates

to a boolean value.

– If expression1 is true, then expression2 is evaluated; otherwise,

expression3 is evaluated.

– The result of the ? operation is that of the expression

evaluated.

– Both expression2 and expression3 are required to return the

same type, which can’t be void

79

Prepared by Sharika T R, SNGCE

int a=3,b=5;

int c=(a>b?a:b);

• Here a>b is false so the value of b is stored in c.

80

Operator Precedence

• Operator precedence determines the order in which the

operators in an expression are evaluated.

int myInt = 12 - 4 * 2;

• What will be the value of myInt? Will it be (12 - 4)*2, that

is, 16? Or it will be 12 - (4 * 2), that is, 4?

• When two operators share a common operand, 4 in this

case, the operator with the highest precedence is

operated first.

• In Java, the precedence of * is higher than that of -.

Hence, the multiplication is performed before subtraction,

and the value of myInt will be 4.
81

Prepared by Sharika T R, SNGCE

82

Associativity of operators

• When an expression has two or more operators with the

same precedence, the expression is evaluated according

to its associativity.

– It is the order of applying operators

a = b = c;

• Here, the value of c is assigned to variable b. Then the

value of b is assigned of variable a. Why? It's because the

associativity of = operator is from right to left.

83

Prepared by Sharika T R, SNGCE

Operator Associativity

84

85

Prepared by Sharika T R, SNGCE

Associativity

• Right to Left associative

– Unary operators

– Assignment operators

– Conditional(ternary) operators)

• All other operators are Left to Right associative

86

Variables In Java

87

Prepared by Sharika T R, SNGCE

Control statements

• A programming language uses control statements to

cause the flow of execution to advance and branch based

on changes to the state of a program

• Categories of control statements

 Selection Statements,

 Iteration Statements

 Jump Statements.

88

• Selection statements allow the program

– to choose different paths of execution based on condition

(outcome of an expression or the state of a variable).

• Iteration statements enable program execution

– to repeat one or more statements (that is, iteration statements

form loops).

• Jump statements allow your program

– to execute in a nonlinear fashion.

89

Prepared by Sharika T R, SNGCE

• Also called decision making statements.

• Selection statements control the flow of program’s
execution based upon conditions known only during run

time. It helps to choose different paths of execution based

on condition.

• Java supports two selection statements:

if

switch

 90

if statement

• if statement is Java’s conditional branch statement.
It can be used to route program execution through different

paths.

• Syntax of simple if statement

if (condition)

{

 // block of code to be executed if the condition is true

………………

}

 91

Prepared by Sharika T R, SNGCE

class Sample{

public static void main(String args[])

{

int a=5;

if(a>0)

{

 System.out.println(" a is a positive number”);

}

}

}

92

If-else statement

• General form of the if statement:

if (condition)

 statement1;

else

 statement2;

• Statement may be a single statement or a compound

statement enclosed in curly braces (that is, a block).

• The condition is any expression that returns a boolean

value.

• The else clause is optional.

93

Prepared by Sharika T R, SNGCE

Working of if-else

if (condition)

 statement1;

else

 statement2;

• If the condition is true, then statement1 is executed.

• Otherwise, statement2 (if it exists) is executed.

• Both statements will not be executed at the same time.

94

class Sample{

public static void main(String args[]) {

int a=5, b=3;

if(a < b) a = 0;

else b = 0;

System.out.println(" a=" + a);

System.out.println(" b=" + b);

}

}

95

Prepared by Sharika T R, SNGCE

• If statement can be controlled using a boolean variable.

• E.g.

…

boolean dataAvailable;

// ...

if (dataAvailable) //if dataAvailable is true

 ProcessData(); //call this function

else

 waitForMoreData(); //call this function

..
96

Nested ifs

• A nested if is an if statement that is the inside (target of)

another if or else.

• The else statement always refers to the

– nearest if statement that is within the same block as the else

and that is not already associated with an else.

97

Prepared by Sharika T R, SNGCE

if(i == 10)

 {

 if(j < 20) a = b;

 if(k > 100) c = d; // this if is

 else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

98

The if-else-if Ladder

• A common programming construct that is based upon a

sequence of nested ifs is the if-else-if ladder.

if(condition)

 statement;

else if(condition)

 statement;

else if(condition)

 statement;

...

else

 statement;

99

Prepared by Sharika T R, SNGCE

• The if statements are executed from the top down.

• As soon as one of the conditions controlling the if is true,

the statement associated with that if is executed, and the

rest of the ladder is bypassed.

• If NONE of the conditions is true, then the final else

statement will be executed.

• The last else acts as a default condition; that is, if all other

conditional tests fail, then the last else statement is

performed.

 100

101

Prepared by Sharika T R, SNGCE

Variables In Java

102

Switch statement

• The switch statement is Java’s multiway branch

statement.

• It is an better alternative than a large series of if-else-if

statements.

103

Prepared by Sharika T R, SNGCE

Syntax of switch

switch (expression)

{

case value1:

 // statement sequence

 break;

case value2:

 // statement sequence

break;

...

case valueN:

 // statement sequence

 break;

default:

 // default statement sequence

}

104

switch(expression){…..}

• The expression inside switch must be of type byte, short,

int, or char;

– each of the values specified in the case statements must be of

a type compatible with the expression. (An enumeration value

can also be used to control a switch statement)

105

Prepared by Sharika T R, SNGCE

Working of switch

• The value of the expression inside switch is compared

with each of the literal values in the case statements.

– If a match is found, the code sequence following that case

statement is executed.

– If none of the constants in the case matches the value of the

expression, then the default statement is executed.

– default statement is optional.

– If no case matches and no default is present, then no further

action is taken.

106

• The break statement is used inside the switch to

terminate a statement sequence.

• When a break statement is encountered, execution

branches to the first line of code after the entire switch

statement.

• This has the effect of “jumping out” of the switch.

107

Prepared by Sharika T R, SNGCE

108

109

Prepared by Sharika T R, SNGCE

Nested switch Statements

• We can use a switch as part of the statement sequence

of an outer switch. This is called a nested switch

110

Features of the switch statement

• The switch differs from the if in that switch can only test for

equality, whereas if can evaluate any type of Boolean expression.

– switch looks only for a match between the value of the expression inside

switch and one of its case constants.

• No two case constants in the same switch can have identical

values.

– But a switch statement and an enclosing outer switch can have case

constants in common.

• A switch statement is usually more efficient than a set of nested

ifs.

111

Prepared by Sharika T R, SNGCE

Switch(features)

• When Java compiler compiles a switch statement, it will

inspect each of the case constants and create a “jump
table” that it will use for selecting the path of execution
depending on the value of the expression.

• So a switch statement will run much faster than the

equivalent logic coded using a sequence of if-elses.

• The compiler can do this because it knows that the case

constants are all the same type and simply must be

compared for equality with the switch expression.

• The compiler has no such knowledge of a long list of if

expressions

112

Variables In Java

113

Prepared by Sharika T R, SNGCE

Iteration Statements

A iteration statements or loop repeatedly executes the

same set of instructions until a termination condition is

met.

Java’s iteration statements (looping statements) are

for

while

do-while

114

while

• The while loop is Java’s most fundamental loop statement. It is
ENTRY CONTROLLED loop.

– The statements inside the body of while is executed only if the condition

inside while is true.

• It repeats a statement or block while its controlling expression is

true.

• General form:

while(condition)

{

// body of loop

}

115

Prepared by Sharika T R, SNGCE

Working of while

while(condition)

{

// body of loop

}

• The condition can be any Boolean expression.

– The body of the loop will be executed as long as the conditional

expression is true.

– When condition becomes false, control passes to the next line

of code immediately after the loop.

 116

• The curly braces are not needed if only a single statement

is being repeated.

while(condition)

 Statement;

117

Prepared by Sharika T R, SNGCE

// Demonstrate the while loop.

class Whileeg {

public static void main(String args[]) {

char ch=‘a’

while(ch==‘a’) {

System.out.println("tick " + n);

n--;

}

 }

}

118

• The body of the while (or any other of Java’s loops) can
be empty.

– This is because a null statement (one that consists only of a

semicolon) is syntactically valid in Java.

while(condition) ;

Here if condition is true no statement is executed as part of

while

 119

Prepared by Sharika T R, SNGCE

class Whileeg {

public static void main(String args[])

{

 float n = 10.5;

 while(n > 0)

 {

 System.out.println("tick " + n);

 }

}

}
120

OUTPUT

tick 10

tick 10

tick 10

…..

.

.

INFINITE LOOP

Variables In Java

121

Prepared by Sharika T R, SNGCE

do-while

• The do-while loop always executes its body at least

once, because its conditional expression is at the bottom

of the loop.

do

{

 //statements

}

while(condition);

 122

Working of do-while

do-while is EXIT CONTROLLED loop.
do

{

 //statements

}

while(condition);

1.Initially the statements inside the do-while loop is

executed

2.then only the condition inside while is checked.

3.Then the loop is executed only if that condition is true.

– That is condition is checked only during exit from do-while loop.

123

Prepared by Sharika T R, SNGCE

124

Variables In Java

125

Prepared by Sharika T R, SNGCE

for

• It is an iteration statement

• looping

for(initialization; condition; iteration) {

 // body

}

126

Working of for loop

• When the loop first starts, the initialization portion of the loop is executed. It

acts as a loop control variable (counter).

– the initialization expression is only executed once.

• Next, condition is evaluated.(Boolean expression)

– It usually tests the loop control variable against a target value.

– If this expression is true, then the body of the loop is

executed.

– If it is false, the loop terminates.

• Next, the iteration portion of the loop is executed.

– increments or decrements the loop control variable.

• Next, condition is evaluated.

• And the process continues until condition becomes false

127

Prepared by Sharika T R, SNGCE

for(; ;)

{

// ...

}

128

INFINITE LOOP

The For-Each Version of the for Loop

for(type var : collection)

 statement-block;

• Here, type specifies the type and var specifies the name

of an iteration variable that will receive the elements from

a collection, one at a time, from beginning to end.

• The collection being cycled through is specified by

collection

129

Prepared by Sharika T R, SNGCE

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums)

 System.out.println(x);

• With each pass through the loop, x is automatically given

a value equal to the next element in nums.

– Thus, on the first iteration, x contains 1;

– on the second iteration, x contains 2; and so on.

• Not only is the syntax streamlined, but it also prevents

boundary errors. 130

1

2

3

4

5
6

7

8

9

10

Nested loops

// Loops may be nested.

class Foreg2{

public static void main(String args[]) {

int i, j;

for(i=0; i<4; i++) {

for(j=0; j<3; j++)

System.out.print("i="+i+" j="+j + "\t\t");

System.out.println();

}

}

}

131

OUTPUT

i=0 j=0 i=0 j=1 i=0 j=2

i=1 j=0 i=1 j=1 i=1 j=2

i=2 j=0 i=2 j=1 i=2 j=2

i=3 j=0 i=3 j=1 i=3 j=2

Prepared by Sharika T R, SNGCE

// Loops may be nested.

class Foreg2{

public static void main(String args[]) {

int i, j;

for(i=0; i<4; i++) {

for(j=0; j<3; j++)

System.out.print(i +"\t\t");

System.out.println();

}

}

}

132

OUTPUT

0 0 0

1 1 1

2 2 2

3 3 3

Variables In Java

133

Prepared by Sharika T R, SNGCE

Jump Statements

Java supports three jump statements:

break

continue

return

134

break statement

• Three uses.

First it terminates a statement sequence in a switch

statement.

Second, it can be used to exit a loop.

Third, it can be used as a “civilized” form of goto.

135

Prepared by Sharika T R, SNGCE

// Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

for(int i=0; i<6; i++)

{ if(i == 3)

 break; // terminate loop if i is 3

 System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

136

OUTPUT

i: 0

i: 1

i: 2

Loop complete.

Using break as a Form of Goto

• By using this form of break, you can, for example, break

out of one or more blocks of code.

• The general form of the labeled break statement is :

 break label;

137

Prepared by Sharika T R, SNGCE

// Using break as a civilized form of goto.

class Breakeg {

public static void main(String args[]) {

boolean t = true;

first: {

 second: {

 third: {

 System.out.println("Before the break.");

 if(t) break second; //break of second block

 System.out.println("This won't execute");

 }

 System.out.println("This won't execute");

 }

 System.out.println(“After second block.");
 }

}}
138

OUTPUT

Before the break.

After second block..

continue statement

• In while and do-while loops, a continue statement causes

control to be transferred directly to the conditional

expression that controls the loop.

• In a for loop, control goes first to the iteration portion of

the for statement and then to the conditional expression.

• For all three loops, any intermediate code after continue is

bypassed(skipped).

139

Prepared by Sharika T R, SNGCE

// Using break to exit a loop.

class continueeg {

public static void main(String args[]) {

for(int i=0; i<6; i++)

{

if(i == 3)

 continue; // skip remaining stmts if i is 3

 // continue loop.control goes to iteration

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}
140

OUTPUT

i: 0

i: 1

i: 2

i: 4

i: 5

Loop complete.

return statement

• The return statement is used to explicitly return from a method.

– The return causes program control to transfer back to the caller

of the method.

• When return statement is executed the method terminates.

• The return causes execution to return to the Java run-time system

• Methods that have a return type other than void return a value to

the calling method(function)

return value;

– Here, value is the value is returned to the calling function

141

Prepared by Sharika T R, SNGCE

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if(t) return;

System.out.println("This won't execute.");

}

}

 142

OUTPUT

Before the return

Variables In Java

143

Prepared by Sharika T R, SNGCE

Arrays

• An array is a group of like-typed(same type) variables that

are referred to by a common name.

• Arrays of any type can be created

• Arrays may have one or more dimensions.

• A specific element in an array is accessed by its index.

– Index means position It starts from 0.

• Index of first element is 0, second element is 1 etc.

144

One-Dimensional Arrays

• create an array variable of the desired type.

• Declaration syntax 1

type variablename[];

E.g. int a[];

• Declaration syntax 2

 type[] variablename;

• The following two declarations are equivalent:

int a[];

int[]a;

Here this declaration means that a is an array variable, but no

array actually exists. No space is allocated for it in memory

145

Prepared by Sharika T R, SNGCE

• We have to link array with an actual, physical array of

integers.

• So we must allocate space using new and assign it to

array variable .

– new is a special operator that allocates memory.

variable=new type[size];

E.g.

int a[];

a= new int[12];

– After this statement executes, variable a will refer to an array of

12 integers

146

int a[]=new int[12];

• Obtaining an array is a two-step process.

1. First, we must declare a variable of the desired array type.

2. Second, we must allocate the memory that will hold the

array, using new, and assign it to the array variable

• In Java all arrays are dynamically allocated.

• It is possible to combine the declaration of the array

variable with the allocation.

E.g.

int a= new int[12];

147

int a[];

a= new int[12];

Prepared by Sharika T R, SNGCE

Store value in array

class Array {

public static void main(String args[])

 {
int a[];

a = new int[4];

a[0] = 1;

a[1] = 3;

a[2] = 2;

a[3]=5;

}

}

148

149

Prepared by Sharika T R, SNGCE

Array initialization

• Arrays can be initialized(give values) when they are declared.

• An array initializer is a list of comma-separated expressions

surrounded by curly braces.

• No need for new operator

class AutoArray {

 public static void main(String args[])

{

 int a[] = { 1,3,2,5};

}

}

 150

• If you try to access elements outside the range of the

array (negative numbers or numbers greater than the

length of the array), it will cause a run-time error.

• E.g

int a[]=new int[10];

a[-3]=5;//ERROR

a[11]=7; //ERROR ARRAY INDEX OUT OF BOUNDS

151

Prepared by Sharika T R, SNGCE

// Average value in an array.

class Average {

public static void main(String args[])

{

double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};

double result = 0;

int i;

for(i=0; i<5; i++)

 result = result + nums[i];

System.out.println("Average is " + result / 5);

}

}
152

int[] num1, nums2, nums3; // create three arrays

– creates three array variables num1,num2,num3 of type int.

• It is the same as writing

int num1[], nums2[], nums3[];

153

Prepared by Sharika T R, SNGCE

Multidimensional Arrays

• Multidimensional arrays are actually arrays of arrays.

• To declare a multidimensional array variable, specify each

additional index using another set of square brackets.

• E.g 2 D array declaration

int b[][]= new int[4][5];

This allocates a 4 by 5 array and assigns it to variable b.

4 rows and 5 columns

154

155

Prepared by Sharika T R, SNGCE

• The following declarations are also equivalent:

char twod[][] = new char[3][4];

char[][] twod = new char[3][4];

156

• When you allocate memory for a multidimensional array,

you need only specify the memory for the first (leftmost)

dimension.

int a[][] = new int[2][];

a[0] = new int[3];

a[1] = new int[3];

– Here a is 2D array with two rows. First row a[0] has 3 columns.

Second row a[1] has 3 columns.

157

int a[][]= new int[2][3];

Prepared by Sharika T R, SNGCE

class TwoDArray {

public static void main(String args[]) {

int a[][]= new int[2][3];

int i, j, k = 0;

for(i=0; i<2; i++)

 {

 for(j=0; j<3; j++)

 {

 a[i][j] = k;

 k++;

 }

 }

for(i=0; i<2; i++)

 { for(j=0; j<3; j++)

 {System.out.print(a[i][j] + " ");}

 System.out.println();

 } } }
158

OUTPUT

0 1 2

3 4 5

• When you allocate dimensions manually, you do not need

to allocate the same number of elements for each

dimension.

• E.g.

int a[][] = new int[2][];

a[0] = new int[1];

a[1] = new int[2];

– Here array a has 2 rows.

– First row a[0] has 1 column.

– Second row a[1] has 1 column.

159

Prepared by Sharika T R, SNGCE

160

Multidimensional array initialization

• Enclose each dimension’s initializer(values) within its own
set of curly braces.

• We can use expressions as well as literal values inside

of array initializers.

• Eg.

int a[][]={ {1,2,3} , {3,4,5}} ;

161

Prepared by Sharika T R, SNGCE

class Matrix {

public static void main(String args[]) {

double m[][] = {

{ 0*0, 1*0, 2*0, 3*0 }, { 0*1, 1*1, 2*1, 3*1 },

{ 0*2, 1*2, 2*2, 3*2 }, { 0*3, 1*3, 2*3, 3*3 }

};

int i, j;

for(i=0; i<4; i++) {

for(j=0; j<4; j++)

 {System.out.print(m[i][j] + " ");}

System.out.println();

}}}

162

OUTPUT

0.0 0.0 0.0 0.0

0.0 1.0 2.0 3.0

0.0 2.0 4.0 6.0

0.0 3.0 6.0 9.0

Variables In Java

163

Prepared by Sharika T R, SNGCE

String class

• String is a class.

• It can defines an object.

• The String type is used to declare string variables

• A quoted string constant(E.g. “hello”) can be assigned to a String
variable.

• A variable of type String can be assigned to another variable of

type String.

• We can use an object of type String as an argument to println()

• E.g.

String str = "this is a test";

System.out.println(str);

164

Here, str is an object of type String.

It is assigned the string “this is a test”.
 This string is displayed by the println() statement.

class Sample {

public static void main(String args[])

{

String s=“Hello”

System.out.print(s);

}

}

165

OUTPUT

Hello

Prepared by Sharika T R, SNGCE

• In Java, string is basically an object that represents

sequence of char values .

• An array of characters works same as Java string.

• For example:

char[] ch={‘H’,’e’,’l’,’l’,’o’};

String s=new String(ch);

 /*This statement converts character array ch to string and store

in string object s.*/

This is same as

String s=“Hello"; //creating string by java string literal

166

String methods

• length()

– The length of a string can be found with the length() method.

class Sample {

 public static void main(String args[])

{

String s=“Hello”;

System.out.print(“Length=”,s.length());

}

}

167

OUTPUT

Length=5

Prepared by Sharika T R, SNGCE

• toUpperCase() and toLowerCase()

– To convert from lower to upper and upper to lower respectively

class Sample {

public static void main(String args[])

{

String s=“Hello World”;

System.out.println(s. toUpperCase());

System.out.println(s. toLowerCase());

}

}

168

OUTPUT

HELLO WORLD

hello world

• indexOf()

– The indexOf() method returns the index (the position) of the first

occurrence of a specified text in a string (including whitespace)

class Sample {

public static void main(String args[])

{

String s=“I am fine.I am ok”;

System.out.println(s.indexOf(“am”));

}

}

169

OUTPUT

2

Prepared by Sharika T R, SNGCE

• String concatenation

– Method 1:The + operator can be used between strings to combine them.

This is called concatenation

– Method 2:We can use concat() method to concatenate two strings.

class Sample {

public static void main(String args[])

{

 String s1="Sachin ";

 String s2="Tendulkar";

 String s3=s1+s2;

 System.out.println(s3);//Sachin Tendulkar

}}
170

OUTPUT
Sachin Tendulkar

• If we add a number and a string, the result will be a string

concatenation.

class Sample {

public static void main(String args[])

{

String s1=“10 ” , s2=“12”;

int a=13;

System.out.println(s1+s2);

System.out.println(s1+a);

}

}
171

OUTPUT

1012

1013

Prepared by Sharika T R, SNGCE

Variables In Java

172

Vector class

• Vector implements a dynamic array

• Vector is synchronized.

• Vector contains many legacy methods that are not part of the

collections framework.

• Vector proves to be very useful if you don't know the size of the

array in advance or you just need one that can change sizes over

the lifetime of a program.

173

Prepared by Sharika T R, SNGCE

• All vectors start with an initial capacity(size).

• After this initial capacity is reached, the next time that you

attempt to store an object in the vector, the vector

automatically allocates space for that object plus extra

room for additional objects.

• The amount of extra space allocated during each

reallocation is determined by the increment that you

specify when you create the vector.

• If we don’t specify an increment, the vector’s size is
doubled by each allocation cycle.

174

• Vector is declared like this:

class Vector<E>

• Here, E specifies the type of element that will be stored.

• Vector constructors are

Vector()

Vector(int size)

Vector(int size, int incr)

Vector(Collection<? extends E> c)

175

Prepared by Sharika T R, SNGCE

• Vector() creates a default vector, which has an initial size of 10.

• Vector(int size) creates a vector whose initial capacity is specified

by size.

• Vector(int size, int incr) creates a vector whose minitial capacity is

specified by size and whose increment is specified by incr.

o The increment specifies the number of elements to allocate each time that

a vector is resized upward.

• Vector(Collection<? extends E> c) creates a vector that contains

the elements of collection c.

176

