
CST281

Object Oriented Programming

MODULE 1

Prepared by Sharika T R, SNGCE

2

Syllabus

• Introduction:
– Approaches to Software Design, Functional Oriented Design, Object

Oriented Design, Case Study of Automated Fire Alarm System.

• Object Modeling Using UML
– Basic Object Oriented concepts, UML (Unified Modeling Language)

diagrams, Use case model, Class diagram, Interaction diagram, Activity
diagram, State chart diagram.

• Introduction to Java -
– Java programming Environment and Runtime Environment, Development

Platforms Standard, Enterprise Java Virtual Machine (JVM), Java
compiler, Byte code, Java applet, Java Buzzwords, Java program
structure, Comments, Garbage Collection, Lexical Issues.

3

Textbook

• Herbert Schildt, Java: The

Complete Reference, 8/e,

Tata McGraw Hill, 2011.

• Rajib Mall, Fundamentals

of Software Engineering,

4th edition, PHI, 2014.

Prepared by Sharika T R, SNGCE

4

Approaches to Software Design

5

Function Oriented Design

• A system is viewed as something that performs a set of
functions.

• Two salient features of the function-oriented design
approach:

a) Top-down decomposition

b) Centralised system state

Prepared by Sharika T R, SNGCE

6

a) Top down decomposition

• Starting at this high level view of the system, each
function is successively refined into more detailed
functions

• For example, consider a function create new library
member which essentially creates
– the record for a new member ,

– assigns a unique membership number to him

– prints a bill towards his membership charge

7

• This high-level function may be refined into the following

subfunctions:

– assign-membership-number

– create-member-record

– print-bill

• Each of these subfunctions may be split into more

detailed subfunctions and so on.

Prepared by Sharika T R, SNGCE

8

b) Centralised system state

• The system state is centralised and shared among

different functions.

• For example, in the library management system, several

functions such as the following share data such as

member-records for reference and updation:

– create-new-member

– delete-member

– update-member-record

9

Object-oriented Design

• A system is viewed as being made up of a collection of objects

• Each object is associated with a set of functions that are called its

methods.

• Each object contains its own data and is responsible for managing

it.

• The data internal to an object cannot be accessed directly by

other objects and only through invocation of the methods of the

object.

• The system state is de-centralised since there is no globally

shared data in the system and data is stored in each object.

Prepared by Sharika T R, SNGCE

10

• For example, in a library automation software, each library

member may be a separate object with its own data and

functions to operate on the stored data.

• The methods defined for one object cannot directly refer

to or change the data of other objects.

11

Object - oriented versus function-oriented design

approaches

Prepared by Sharika T R, SNGCE

12

Case Study on Automatic fire Alarm system

• The owner of a large multi-stored building wants to have a
computerized fire alarm system for his build ing . Smoke detectors
and fire alarms would be placed in each room of the build ing .
The fire alarm system would monitor the status of these
smoke detectors . W henever a fire condition is reported by any of the
smoke detectors, the fire alarm system should determine the
location at which the fire condition is reported by any of the
smoke detectors, the fire alarm system should determ ine the
location at which the fire condition has occurred and then sound
the alarms only in the neighboring locations . The fire alarm
system should also flash an alarm message on the computer console .
Fire fighting personnel
• man the console round the clock . After a fire condition has been
successfully handled, the fire alarm system should support resetting
the alarms by the fire fighting personnel.

Fire Alarm System Function Oriented Approach

13

Prepared by Sharika T R, SNGCE

Fire Alarm System Object Oriented Approach

14

• In the object oriented program , an appropriate number of
instances of the class detector and alarm should be
created .

• If the function-oriented and the object-oriented programs are

examined,

• it can be seen that in the function-oriented program, the system

state is centralized and several functions accessing this central

data are defined.

• In case of the object-oriented program, the state information is

distributed among various sensor and alarm objects.

15

Prepared by Sharika T R, SNGCE

16

Syllabus

• Introduction:
– Approaches to Software Design, Functional Oriented Design, Object

Oriented Design, Case Study of Automated Fire Alarm System.

• Object Modeling Using UML
– Basic Object Oriented concepts, UML (Unified Modeling Language)

diagrams, Use case model, Class diagram, Interaction diagram, Activity
diagram, State chart diagram.

• Introduction to Java -
– Java programming Environment and Runtime Environment, Development

Platforms Standard, Enterprise Java Virtual Machine (JVM), Java
compiler, Bytecode, Java applet, Java Buzzwords, Java program
structure, Comments, Garbage Collection, Lexical Issues.

Basic Object Oriented concepts, UML (Unified Modeling Language)

diagrams, Use case model, Class diagram, Interaction diagram,

Activity diagram, State chart diagram.

Object Modeling Using UML

17

Prepared by Sharika T R, SNGCE

Basic Object Oriented Concepts

• Object-Oriented Programming (OOP) is the term used to describe

a programming approach based on objects and classes.

• The object-oriented paradigm allows us to organise software as a

collection of objects that consist of both data and behaviour.

18

• Major object oriented concepts are

– Objects

– Class

– Encapsulation

– Abstraction

– Inheritance

– Polymorphism

19

Prepared by Sharika T R, SNGCE

20

Objects

• Complex data type that has an identity , contains
other data types called attributes and modules of
code called operations or methods

• Attributes and associated values are hidden inside
the object.

• Any object that wants to obtain or change a value
associated with other object, must do so by
sending a message to one of the objects (invoking
a method)

21

Prepared by Sharika T R, SNGCE

22

State => Variables

Name RollNo

Behaviors => Functions

setName() setRollNo()

Classes

• Classes are templates that have methods
and attribute names and type information ,
but no actual values !

• Objects are generated by these classes
and they actually contain values .

• W e design an application at the class
level

• W hen the system is running objects are
created by classes as they are needed to
contain state information .

• W hen objects are no longer needed by the
application , they are elim inated .

23

Prepared by Sharika T R, SNGCE

Abstraction

• Abstraction is a process where

you show only “relevant” data
and “hide” unnecessary details
of an object from the user.

24

Encapsulation

• The wrapping up of data(variables)

and functions (methods) that

operates on the data, into a single

unit (called class) is known as

encapsulation.

• It is also called "information

hiding“, hides the internal

representation, or state, of an

object from the outside through

access modifies (Private / Public).

• Hiding unnecessary details, at

implementation level.

25

Prepared by Sharika T R, SNGCE

Encapsulation Cont.

•Protection of data from accidental corruption, by means

of access specifiers (Private / Public), it provides

security.

•Flexibility and extensibility of the code and reduction in

complexity

•Encapsulation of a class can hide the internal details of

how an object does something

•Encapsulation protects abstraction

26

Inheritance

• The capability of a class to derive

properties and characteristics from another

class is called Inheritance.

• Inheritance is the process by which objects

of one class acquired the properties of

objects of another classes

• Base Class : The class whose properties

are inherited by subclass is called Base

Class or Super class.

• Derived Class : The class that inherits

properties from another class is called

Subclass or Derived Class.
27

Prepared by Sharika T R, SNGCE

Inheritance Cont..

• Reusability: Inheritance supports the concept of “reusability”, i.e.

when we want to create a new class and there is already a class

that includes some of the code that we want, we can derive our

new class from the existing class. By doing this, we are reusing

the fields and methods of the existing class.

28

Types of Inheritance

29

Prepared by Sharika T R, SNGCE

Polymorphism

• The word polymorphism means having

many forms.

• Refers to a programming language's

ability to process objects differently

• depending on their data type or class

• An operation may exhibit different

behaviours in different instances. The

behaviour depends upon the types of

data used in the operation.

• Ability for objects of different classes

related by inheritance to respond

differently to the same member

function call
30

31

Prepared by Sharika T R, SNGCE

OO concepts review

32

UML

Object Modeling using Unified Modeling Language

33

Prepared by Sharika T R, SNGCE

Unified Modeling Language(UML)

• A standardized modeling language consisting of an
integrated set of diagrams ,

• developed to help system and software developers
for specifying , visualizing , constructing , and documenting
the artifacts of software systems .

• UML is a pictorial language used to make software blueprints
• UML can be described as a general purpose visual modeling

language to visualize, specify, construct, and document software

system.

• UML is not a programming language but tools can be used to

generate code in various languages using UML diagrams.
 34

UML Diagram Types

35

Prepared by Sharika T R, SNGCE

► UML diagrams are broadly classified as structure
diagrams and behaviour diagrams .
 Structure Diagrams : Capture static aspects or structure

of a system
 Behaviour Diagrams : Capture dynam ic aspects or

behavior of the system

36

CLASS DIAGRAM

37

Prepared by Sharika T R, SNGCE

38

Class diagram

► Using class diagram, we can create the static structure of

a system by showing the system's classes, their

attributes, operations (or methods).

► Class diagrams helps us to identify relationship between

different classes or objects.

39

Prepared by Sharika T R, SNGCE

Class diagram

► Class Name - The name of the class

appears in the first partition.

► Class Attributes

 Attributes are shown in the second partition.

 The attribute type is shown after the colon.

 Attributes map onto member variables (data

members) in code.

► Class Operations (Methods)

 Operations are shown in the third partition. They

are services the class provides.

 The return type of a method is shown after the

colon at the end of the method signature.

 The data type of method parameters are shown

after the colon following the parameter name.
40

Class Visibility

► The +, - and # symbols before
an attribute and operation
name in a class denote the
visibility of the attribute and
operation.
 + denotes public attributes or

operations
 - denotes private attributes or

operations
 # denotes protected attributes or

operations

41

Prepared by Sharika T R, SNGCE

Parameter Directionality

► Each parameter in an operation (method) may be denoted as in,
out or in-out which specifies its direction with respect to the caller.

► This directionality is shown before the parameter name.

42

• inout: the parameter comes with a

value and after executing the called

object, the resulting value is returned

to the caller object.

•in: the parameter comes with a
value and after executing the called

object, the resulting value is not

returned to the caller object. (*)

•out: the parameter doesn't come

with a value and after executing the
called object, the resulting value is

returned to the caller object.

Relationship Between Classes

► UML is not just about

pretty pictures. If used

correctly, UML precisely

conveys how code

should be implemented

from diagrams.

► If precisely interpreted,

the implemented code

will correctly reflect the

intent of the designer.

43

Prepared by Sharika T R, SNGCE

Relationship Between Classes- Dependency

► A dependency means the relation between two or more classes in

which a change in one may force changes in the other.

► Dependency indicates that one class depends on another.

► A dashed line with an open arrow

44

Relationship Between Classes- Generalization

► A generalization (inheritance) helps to connect a subclass to its

superclass.

► A sub-class is inherited from its superclass.

► Class diagram allows inheriting from multiple superclasses.

► A solid line with a hollow arrowhead that point from the child to

the parent class

45

Prepared by Sharika T R, SNGCE

Relationship Between Classes- Asssociation

► This kind of relationship represents static relationships between classes A

and B.

► Eg: A Person lives at an location

► It should be named to indicate the role played by the class attached at the

end of the association path.

► A solid line connecting two classes

46

Relationship Between Classes- Multiplicity

► Multiplicity means how many objects of each class take part in the

relationships

Exactly one - 1

Zero or one - 0..1

Many - 0..* or *

One or more - 1..*

Exact Number - e.g. 3..4 or 6

Or a complex relationship - e.g. 0..1, 3..4, 6.* would mean any number of

objects other than 2 or 5

47

Prepared by Sharika T R, SNGCE

Relationship Between Classes- Aggregation

► Aggregation is a special type of association that models a whole- part relationship between

aggregate and its parts.

► For example, the class college is made up of one or more student.

► In aggregation, the contained classes are never totally dependent on the lifecycle of the

container.

► Here, the college class will remain even if the student is not available.

► A solid line with an unfilled diamond at the association end connected to the class of

composite

48

49

Prepared by Sharika T R, SNGCE

Relationship Between Classes- Composition

► The composition is a special type of aggregation which denotes strong ownership between

two classes when one class is a part of another class.

► A college has many departments and many students.

► The departments of the college can't exist without the college itself.

► This means “Departments” are owned by the college. Students can exist without the college, the

ownership of students are not in the college alone.

► Students can look for a new college if the college doesn't exist.

► A solid line with a filled diamond at the association connected to the class of composite.

50

51

Prepared by Sharika T R, SNGCE

52

ATM Machine class diagram

USE CASE DIAGRAM

53

Prepared by Sharika T R, SNGCE

Use case diagram

► A UML use case diagram is the primary form of system/software

requirements for a new software program underdeveloped.

► Use cases specify the expected behavior (what), and not the

exact method of making it happen (how).

► Use cases once specified can be denoted both textual and visual

representation (i.e. use case diagram).

► A key concept of use case modeling is that it helps us design a

system from the end user's perspective.

► It is an effective technique for communicating system behavior in

the user's terms by specifying all externally visible system

behavior.

54

► It only summarizes some of the relationships between

use cases, actors, and systems.

► It does not show the order in which steps are performed

to achieve the goals of each use case.

55

Prepared by Sharika T R, SNGCE

Orgin

► These days use case modeling is often associated with

UML, although it has been introduced before UML

existed. Its brief history is as follow:

► In 1986, Ivar Jacobson first formulated textual and visual

modeling techniques for specifying use cases.

► In 1992 his co-authored book Object-Oriented Software

Engineering - A Use Case Driven Approach helped to

popularize the technique for capturing functional requirements,

especially in software development.

56

Purpose

► Use case diagrams are typically developed in the early

stage of development

 Specify the context of a system

 Capture the requirements of a system

 Validate a systems architecture

 Drive implementation and generate test cases

 Developed by analysts together with domain experts

57

Prepared by Sharika T R, SNGCE

58

59

Prepared by Sharika T R, SNGCE

► Actor

► Someone interacts with use case (system

function).

► Named by noun.

► Actor plays a role in the business

► Similar to the concept of user, but a user can

play different roles

► For example:

► A prof. can be instructor and also researcher

► plays 2 roles with two systems

► Actor triggers use case(s).

► Actor has a responsibility toward the system

(inputs), and Actor has expectations from the

system (outputs).
60

► Use Case

► System function (process - automated or manual)

► Named by verb + Noun (or Noun Phrase).

► Each Actor must be linked to a use case, while some use cases may not

be linked to actors.

61

Prepared by Sharika T R, SNGCE

► Communication Link/ Association

► The participation of an actor in a use case is shown by connecting an

actor to a use case by a solid link.

► Actors may be connected to use cases by associations, indicating that the

actor and the use case communicate with one another using messages.

62

► Boundary of system

► The system boundary is potentially the entire system as defined in the

requirements document.

► For large and complex systems, each module may be the system

boundary.

► For example, for an ERP system for an organization, each of the modules

such as personnel, payroll, accounting, etc.

63

Prepared by Sharika T R, SNGCE

Structuring Use Diagram with Relationships

► There can be 5 relationship types in a use case diagram.

► Association between actor and use case

► Generalization of an actor

► Extend between two use cases

► Include between two use cases

► Generalization of a use case

64

Association between Actors and usecase

► An actor must be associated with

at least one use case.

► An actor can be associated with

multiple use cases.

► Multiple actors can be associated

with a single use case.

65

Prepared by Sharika T R, SNGCE

Generalization of Actors

► Generalization of an actor means that one actor can inherit the

role of the other actor.

► The descendant inherits all the use cases of the ancestor.

► The descendant has one or more use cases that are specific to

that role.

66

Extend Relationship between two Use Cases

► The <<extend>> use case

inserting additional action

sequences into the base use-

case sequence.

► The extending use case is

dependent on the extended

(base) use case.

► The extending use case is

usually optional and can be

triggered conditionally.

► The extended (base) use case

must be meaningful on its own.

67

Prepared by Sharika T R, SNGCE

Include Relationship between two Use Cases

► The time to use the <<include>> relationship is after you have

completed the first cut description of all your main Use Cases.

► Include relationship implies one use case includes the behaviour

of another use case in its sequence of events and actions

► The main reason for this is to reuse the common actions across

multiple use cases.

► In some situations, this is done to simplify complex behaviours.

► The base use case is incomplete without the included use

case.

► The included use case is mandatory and not optional.

 68

69

Prepared by Sharika T R, SNGCE

Generalization of a use case

► A generalization relationship means that a child use case

inherits the behavior and meaning of the parent use

case.

► The child may add or override the behavior of the parent.

70

Use Cases

► The name of an actor or a use case must be meaningful

and relevant to the system.

► Interaction of an actor with the use case must be defined

clearly and in an understandable way.

► Annotations must be used wherever they are required.

► If a use case or an actor has multiple relationships, then

only significant interactions must be displayed.

71

Prepared by Sharika T R, SNGCE

How to Identify Actors

► The following questions can help you identify the actors of your

system (Schneider and Winters - 1998):

 Who uses the system?

 Who installs the system?

 Who starts up the system?

 Who maintains the system?

 Who shuts down the system?

 What other systems use this system?

 Who gets information from this system?

 Who provides information to the system?

 Does anything happen automatically at a present time?

 72

How to Identify Use Cases

► The following questions can be asked to identify use

cases, once your actors have been identified (Schneider

and Winters - 1998)

 What functions will the actor want from the system?

 Does the system store information? What actors will create,

read, update or delete this information?

 Does the system need to notify an actor about changes in the

internal state?

 Are there any external events the system must know about?

What actor informs the system of those events?

 73

Prepared by Sharika T R, SNGCE

Use Case diagram example-Online Shopping

74

ATM System

75

Prepared by Sharika T R, SNGCE

Library

76

INTERACTION DIAGRAM

77

Prepared by Sharika T R, SNGCE

Interaction diagram

► Interaction diagram are used in UML to establish communication

between objects.

► It does not manipulate the data associated with the particular

communication path.

► Mostly focus on message passing and how these messages make

up one functionality of a system.

► The critical component in an interaction diagram is lifeline and

messages.

► Interaction diagrams capture the dynamic behavior of any system

78

79

Prepared by Sharika T R, SNGCE

Notation of Interaction Diagrams

► Lifeline

► A lifeline represents a single

participant in an interaction.

► It describes how an instance of a

specific classifier participates in

the interaction.

► Name(optional) - It is used to refer

the lifeline within a specific

interaction.

► Type - name of a classifier of which

the lifeline represents an instance.

 80

Purpose of Interaction Diagrams

► Used to represent the dynamic behavior of a system

► Describes message flow in the system

► Visualizes the communication and sequence of message

passing in the system

► Describe structural aspects of various objects in the

system

► Represents ordered sequence of interactions within a

system

81

Prepared by Sharika T R, SNGCE

Different types of Interaction Diagrams

1. Sequence diagram

– Purpose - To visualize the sequence of a message flow in the

system

– Shows the interaction between two lifelines

2. Collaboration diagram

– Also called as a communication diagram

– Shows how various lifelines in the system connects.

3. Timing diagram

– Focus on the instance at which a message is sent from one

object to another object.
82

1. Sequence Diagram

► A Sequence Diagram simply depicts interaction between

objects in a sequential order.

► The purpose of a sequence diagram in UML is to

visualize the sequence of a message flow in the system

► Messages – Communication between objects is depicted

using messages.

► The messages appear in a sequential order on the

lifeline.

83

Prepared by Sharika T R, SNGCE

• In a sequence diagram, a lifeline is represented by a vertical bar.

• A lifeline represents an individual participant in a sequence

diagram

• A lifeline will usually have a rectangle containing its object name

• A message flow between two or more objects is represented

using a vertical dotted line which extends across the bottom of the

page.

• In a sequence diagram, different types of messages and

operators are used

• In a sequence diagram, iteration and branching are also used.

84

Messages used

85

Prepared by Sharika T R, SNGCE

Sequence Diagram- Example

86

Synchronous Messages

► A synchronous message waits

for a reply before the

interaction can move forward.

► The sender waits until the

receiver has completed the

processing of the message.

► The caller continues only when

it knows that the receiver has

processed the previous

message.

87

Prepared by Sharika T R, SNGCE

Asynchronous Messages

► An asynchronous message

does not wait for a reply

from the receiver.

► The interaction moves

forward irrespective of the

receiver processing the

previous message or not.

88

Create message

► We use a Create message

to instantiate a new object in

the sequence diagram.

► There are situations when a

particular message call

requires the creation of an

object.

89

Prepared by Sharika T R, SNGCE

Delete Message

► We use a Delete Message to

delete an object.

► When an object is deallocated

memory or is destroyed within

the system we use the Delete

Message symbol.

► It destroys the occurrence of the

object in the system.

90

Self Message

• Certain scenarios might arise where the object needs to

send a message to itself.

91

Device wants to access its webcam

Prepared by Sharika T R, SNGCE

Reply Message

• Reply messages are used to show the message being
sent from the receiver to the sender.

92 A scenario where a reply message is used

Found Message

• A Found message is used to represent a scenario where

an unknown source sends the message.

93
A scenario where a found message is used

Prepared by Sharika T R, SNGCE

Lost Message

• A Lost message is used to represent a scenario where the

recipient is not known to the system.

94 A scenario where a lost message is used

A sequence diagram for an emotion based Music Player

95

Prepared by Sharika T R, SNGCE

Benefits of a Sequence Diagram

• Sequence diagrams are used to explore any real

application or a system.

• Sequence diagrams are used to represent message flow

from one object to another object.

• Sequence diagrams are easier to maintain.

• Sequence diagrams are easier to generate.

• Sequence diagrams can be easily updated according to

the changes within a system.

• Sequence diagram allows reverse as well as forward

engineering. 96

Drawbacks of a sequence diagram

• Sequence diagrams can become complex when too many

lifelines are involved in the system.

• If the order of message sequence is changed, then

incorrect results are produced.

• Each sequence needs to be represented using different

message notation, which can be a little complex.

• The type of message decides the type of sequence inside

the diagram

97

Prepared by Sharika T R, SNGCE

2. Collaboration Diagram

► Collaboration represents the

relationships and interactions

among software objects.

► They are used to understand

the object architecture within

a system rather than the flow

of a message as in a

sequence diagram.

98

Benefits of Collaboration Diagram

► It is also called as a communication diagram.

► It emphasizes the structural aspects of an interaction diagram - how lifeline

connects.

► Its syntax is similar to that of sequence diagram except that lifeline don't have tails.

► Messages passed over sequencing is indicated by numbering each message

hierarchically.

► Compared to the sequence diagram communication diagram is semantically weak.

► Object diagrams are special case of communication diagram.

► It allows you to focus on the elements rather than focusing on the message flow as

described in the sequence diagram.

► Sequence diagrams can be easily converted into a collaboration diagram as

collaboration diagrams are not very expressive.

► While modelling collaboration diagrams w.r.t sequence diagrams, some information

may be lost.

99

Prepared by Sharika T R, SNGCE

Components of Collaboration Diagram

100

101

Prepared by Sharika T R, SNGCE

Difference between Sequence and Collaboration Diagram

102

3. Timing Diagram

► Timing diagrams are used to represent the

state of an object at a particular instance of

time.

► It is used to denote the transformation of an

object from one form into another form.

► Timing diagram does not contain notations

as required in the sequence and

collaboration diagram.

► The flow between the software program at

various instances of time is represented

using a waveform.

► Timing diagram can be used to keep track of

every change inside the system.

103

Prepared by Sharika T R, SNGCE

Difference between Sequence and Collaboration

Diagram

104

Sequence Diagrams Collaboration Diagrams

The sequence diagram represents the UML,
which is used to visualize the sequence of
calls in a system that is used to perform a
specific functionality.

The collaboration diagram also comes
under the UML representation which is
used to visualize the organization of the
objects and their interaction.

The sequence diagram are used to represent
the sequence of messages that are flowing
from one object to another.

The collaboration diagram are used to
represent the structural organization of the
system and the messages that are sent and
received.

The sequence diagram is used when time
sequence is main focus.

The collaboration diagram is used when
object organization is main focus.

The sequence diagrams are better suited of
analysis activities.

The collaboration diagrams are better
suited for depicting simpler interactions of
the smaller number of objects.

ACTIVITY DIAGRAM

105

Prepared by Sharika T R, SNGCE

ACTIVITY DIAGRAM

• ACTIVITY DIAGRAM is basically a flowchart to represent the flow

from one activity to another activity.

• The activity can be described as an operation of the system

• The basic purpose of activity diagrams is to capture the dynamic

behavior of the system

• It is also called object-oriented flowchart

• Activity diagrams are not only used for visualizing the dynamic

nature of a system, but they are also used to construct the

executable system by using forward and reverse engineering

techniques.

106

Basic components of an activity diagram

• Action: A step in the activity where in the users or software

perform a given task.

• Decision node: A conditional branch in the flow that is represented

by a diamond. It includes a single input and two or more outputs.

• Control flows: Another name for the connectors that show the flow

between steps in the diagram.

• Start node: Symbolizes the beginning of the activity. The start

node is represented by a black circle.

• End node: Represents the final step in the activity. The end node

is represented by an outlined black circle.

107

Prepared by Sharika T R, SNGCE

Activity diagram symbols

• Start symbol - Represents the beginning of a process or workflow

in an activity diagram.

• Activity symbol - Indicates the activities that make up a modeled

process. These symbols, which include short descriptions within

the shape, are the main building blocks of an activity diagram.

• Connector symbol - Shows the directional flow, or control flow, of

the activity.

108

• Joint symbol / Synchronization bar - Combines two concurrent

activities and re-introduces them to a flow where only one activity

occurs at a time. Represented with a thick vertical or horizontal

line.

• Fork symbol - Splits a single activity flow into two concurrent

activities. Symbolized with multiple arrowed lines from a join.

• Decision symbol - Represents a decision and always has at least

two paths branching out with condition text.

109

Prepared by Sharika T R, SNGCE

• Note symbol - Allows the diagram creators or collaborators to

communicate additional messages that don't fit within the diagram

itself. Leave notes for added clarity and specification.

• Send signal symbol - Indicates that a signal is being sent to a

receiving activity

• Receive signal symbol - Demonstrates the acceptance of an

event. After the event is received, the flow that comes from this

action is completed.

110

• Flow final symbol - Represents the end of a specific process flow.

This symbol shouldn’t represent the end of all flows in an activity.
The flow final symbol should be placed at the end of a single

activity flow.

• Condition text - Placed next to a decision marker to let you know

under what condition an activity flow should split off in that

direction

• End symbol - Marks the end state of an activity and represents

the completion of all flows of a process.

111

Prepared by Sharika T R, SNGCE

Activity diagram

 a login page

112

Activity Diagram -

Banking system

113

Prepared by Sharika T R, SNGCE

STATE CHART DIAGRAM

• The primary purpose of a state chart diagram is to model

interactive systems and define each and every state of an object.

• State chart diagrams are also referred to as State machines and

state diagrams.

• A state machine consists of states, linked by transitions. A state is

a condition of an object in which it performs some activity or waits

for an event

114

Notation and Symbol for State Machine

115

Prepared by Sharika T R, SNGCE

• Initial state - The initial state symbol is used to indicate

the beginning of a state machine diagram.

• Final state - This symbol is used to indicate the end of a

state machine diagram.

• Decision box - It contains a condition. Depending upon

the result of an evaluated guard condition, a new path is

taken for program execution.

• Transition - A transition is a change in one state into

another state which is occurred because of some event. A

transition causes a change in the state of an object.
116

State box

• States represent situations during the life of an object.

• It is denoted using a rectangle with round corners.

• The name of a state is written inside the rounded

rectangle.

• A state can be either active or inactive.

• When a state is in the working mode, it is active, as soon

as it stops executing and transits into another state, the

previous state becomes inactive, and the current state

becomes active.

117

Prepared by Sharika T R, SNGCE

118

