Prepared by Sharika T R, SNGCE

CST281

Object Oriented Programming
MODULE 1

* |Introduction:

— Approaches to Software Design, Functional Oriented Design, Object
Oriented Design, Case Study of Automated Fire Alarm System.

* Object Modeling Using UML

— Basic Object Oriented concepts, UML (Unified Modeling Language)
diagrams, Use case model, Class diagram, Interaction diagram, Activity
diagram, State chart diagram.

* Introduction to Java -

— Java programming Environment and Runtime Environment, Development
Platforms Standard, Enterprise Java Virtual Machine (JVM), Java
compiler, Byte code, Java applet, Java Buzzwords, Java program
structure, Comments, Garbage Collection, Lexical Issues.

Prepared by Sharika T R, SNGCE

Textbook

Cg'ﬁnplete

Reference

» Herbert Schildt, Java: The
Complete Reference, 8/e,
Tata McGraw Hill, 2011.

* Rajib Mall, Fundamentals
of Software Engineering,
4th edition, PHI, 2014.

Approaches to Software Design

s XO SofanNaXe

n
APPYO2T Ccen

Prepared by Sharika T R, SNGCE

Function Oriented Design

« A system is viewed as something that performs a set of
functions.

» Two salient features of the function-oriented design
approach:

a) Top-down decomposition
b) Centralised system state

a) Top down decomposition

« Starting at this high level view of the system, each
function is successively refined into more detailed
functions

» For example, consider a function create new library
member which essentially creates
— the record for a new member ,

— assigns a unique membership number to him
— prints a bill towards his membership charge

Prepared by Sharika T R, SNGCE

« This high-level function may be refined into the following
subfunctions:
— assign-membership-number
— create-member-record
— print-bill

» Each of these subfunctions may be splitinto more
detailed subfunctions and so on.

b) Centralised system state

* The system state is centralised and shared among
different functions.

* For example, in the library management system, several
functions such as the following share data such as
member-records for reference and updation:

— create-new-member
— delete-member
— update-member-record

Prepared by Sharika T R, SNGCE

Object-oriented Design

A system is viewed as being made up of a collection of objects

« Each object is associated with a set of functions that are called its
methods.

» Each object contains its own data and is responsible for managing
it.

» The data internal to an object cannot be accessed directly by

other objects and only through invocation of the methods of the

object.

« The system state is de-centralised since there is no globally
shared data in the system and data is stored in each object.

» For example, in a library automation software, each library

member may be a separate object with its own data and
functions to operate on the stored data.

» The methods defined for one object cannot directly refer
to or change the data of other objects.

Prepared by Sharika T R, SNGCE

Object - oriented versus function-oriented design

Object-Oriented Approach Function-Oriented Approach

The basic abstractions are not the real world The basic abstractions, which are given to the
functions but are the data abstraction where the | user are real world functions.
real world entities are represented.

Functions are grouped together on the basis of Functions are grouped together by which a higher
the data they operate since the classes are level function is obtained.
associated with their methods

In this approach a state information is not In this approach the state information is often
represented in a centralised memory butis represented in a centralised state memory.
implemented or distributed among the objects of

the system.

We decompose in the class level We decompose in the function/procedure level
Bottom up approach Top down approach

Case Study on Automatic fire Alarm system

« The owner of a large multi-stored building wants to have a

for his building. Smoke detectors
and fire alarms would be placed in each room of the building.
The fire alarm system would monitor the status of these
smoke detectors. Whenever a fire condition is reported by any of the
smoke detectors, the fire alarm system should determine the
location at which the fire condition is reported by any of the
smoke detectors, the fire alarm system should determine the
location at which the fire condition has occurred and then sound
the alarms only in the neighboring locations. The fire alarm
system should also flash an alarm message on the computer console.
Fire fighting personnel

* man the console round the clock. After a fire condition has been
successfully handled, the fire alarm system should support resettin%
the alarms by the fire fighting personnel.

Prepared by Sharika T R, SNGCE

Fire Alarm System Function Oriented Approach

J/* Global data (system state) accessible by varions functions */f

BOOL detector_status[MAX ROOMS];

int detector_ locs [MAX ROOMS];

BOOL alarm status [MAX ROOMS]; JS* alarm activated when status iz set #/
int alarm locs[MAX ROCMS]:; /* room number where alarm is located */
int neighbor-alarm [MAX ROOMS][10]: /* each detector has at most 10 neighboring
locations */

The function= which operate on the system state are:

interrogate detectors();

get detector location();

determine neighbor(); ring alamm();

reset_alarm(};

report fire location():;

13

Fire Alarm System Object Oriented Approach

class detector
attributes:
status, location, neighbors
operations:
create, sense status, get location, find neighbors
class alarm
attributes:
location, status
operations:

create, ring alarm, get location,reset alarm

14

Prepared by Sharika T R, SNGCE

* Inthe object oriented program, an appropriate number of
instances of the class detector and alarm should be
created.

« If the function-oriented and the object-oriented programs are
examined,

* it can be seen that in the function-oriented program, the system
state is centralized and several functions accessing this central
data are defined.

* In case of the object-oriented program, the state information is
distributed among various sensor and alarm objects.

* |Introduction:

— Approaches to Software Design, Functional Oriented Design, Object
Oriented Design, Case Study of Automated Fire Alarm System.

» Object Modeling Using UML

— Basic Object Oriented concepts, UML (Unified Modeling Language)
diagrams, Use case model, Class diagram, Interaction diagram, Activity
diagram, State chart diagram.

* Introduction to Java -

— Java programming Environment and Runtime Environment, Development
Platforms Standard, Enterprise Java Virtual Machine (JVM), Java
compiler, Bytecode, Java applet, Java Buzzwords, Java program
structure, Comments, Garbage Collection, Lexical Issues.

Prepared by Sharika T R, SNGCE

Object Modeling Using UML

Basic Object Oriented concepts, UML (Unified Modeling Language)
diagrams, Use case model, Class diagram, Interaction diagram,
Activity diagram, State chart diagram.

17

Basic Object Oriented Concepts

» Object-Oriented Programming (OOP) is the term used to describe
a programming approach based on objects and classes.

« The object-oriented paradigm allows us to organise software as a
collection of objects that consist of both data and behaviour.

Object V4

O
Abstraction O'ie"'ec.’ Polymorphism) \)
Programming

Concepts

Withdraw, deposit, transfer Customer, money, account

Inheritance Encapsulation

18

» Major object oriented concepts are

— Objects

— Class

— Encapsulation
— Abstraction

— Inheritance

— Polymorphism

Prepared by Sharika T R, SNGCE

19

Class

Create instance

. Dog ; q

Properties Methods
Color Sit

Eye Color Lay Down
Height Shake
Length Come
Weight

Object

Bobby

Property Values
Color: Yellow

Eye Color: Brown
Height: 17 in
Length: 35 in
Weight: 24 pounds

Methods Class

Sit

Lay Down

Shake

e Data
Members
Methods

model
color
brand

speed()
size()

model - Ertiga
color - Mehroon
brand - Maruti

model - XUV500
color - Black
brand - Mahindra

model - Swift
color - Red
brand - Maruti

Prepared by Sharika T R, SNGCE

« Complex data type that has an identity, contains
other data types called attributes and modules of
code called operations or methods

o Attributes and associated values are hidden inside
the object.

 Any object that wants to obtain or change a value
associated with other object, must do so by
sending a message to one of the objects (invoking
a method)

21

Animal - dass —
Objects of Animal class

|
#

Class Student State => Variables

i Name RolINo
rollNo

setName() / Behaviors => Functions
setRollNo() | setName() setRolINo()

1999 1876

Blueprint

22

Prepared by Sharika T R, SNGCE

Classes are templates that have methods

and attribute names and type information, DOC:I

but no actual values! Breed

Objects are generated by these classes Size - il
and they actually contain values. C/:g‘:r D
We design an application at the class

level EatO)

When the system is running objects are Sleep() ‘ Herness)
created by classes as they are needed to SitQ)

contain state information. Run®)

When objects are no longer needed by the

application, they are eliminated. 23

Abstraction

* Abstraction is a process where
you show only “relevant” data
and “hide” unnecessary details
of an object from the user.

24

Prepared by Sharika T R, SNGCE

Encapsulation

» The wrapping up of data(variables)
and functions (methods) that class class
operates on the data, into a single {
unit (called class) is known as

i data members
encapsulation. .

* ltis also called "information methods (behavior)

hiding®, hides the internal

ArmCmm e, Em

zo —

Variables

representation, or state, of an } Methods

object from the outside through —

access modifies (Private / Public).
* Hiding unnecessary details, at

implementation level.

Z0—=2>r~CWwnor>nZm

Fig: Encapsulation

25

Encapsulation Cont.

*Protection of data from accidental corruption, by means
of access specifiers (Private / Public), it provides
security.

Flexibility and extensibility of the code and reduction in
complexity

*Encapsulation of a class can hide the internal details of
how an objectdoes something

*Encapsulation protects abstraction

26

Prepared by Sharika T R, SNGCE

« The capability of a class to derive
properties and characteristics from another
class is called Inheritance.

* Inheritance is the process by which objects
of one class acquired the properties of
objects of another classes

+ Base Class : The class whose properties
are inherited by subclass is called Base
Class or Super class.

* Derived Class : The class that inherits
properties from another class is called
Subclass or Derived Class.

g Soniam !
%, BaseClass

Car Parent class

relnr,

RN
Tomo- fullp

Suv

7N

Lotus Mclearen Jeep Rover

ar
Child classes

Car RaceCar
Objects /|

oo

Compact

I

MiniCooper Fiat
-

Inheritance Cont..

» Reusability: Inheritance supports the concept of “reusability”, i.e.
when we want to create a new class and there is already a class
that includes some of the code that we want, we can derive our
new class from the existing class. By doing this, we are reusing
the fields and methods of the existing class.

Base Class

Feature 1 Features of

base class

Feature 2

]

Derived Class (Inherited from base class)

Feature 1 Features of base class

Class Vehicle

fuelAmount()

capacity()
applyBrakes()

\

accessible to derived
class because of

Feature 2 inheritance

Class Bus

Class Car

Class Truck

Feature 3 Feature defined in

Z0

Prepared by Sharika T R, SNGCE

Types of Inheritance

Single Inheritance Hierarchial Inheritance MultiLevel Inheritance

01 s'ng’e Inheritance Super Class Super Class Super Class

o Multilevel Inheritance
Sub Class Sub Class 1 | | Sub Class 2 | | Sub Class 3 m

Hierarchical Inheritance

Hybrid Inheritance Multiple Inhertance

3 3 Super Class Super Class 1 Super Class 2
") Multiple Inheritance /\ ,\ /
Sub Class 1 Sub Class 2 Sub Class
Hybrid Inheritance \ /

Sub Class 3

Polymorphism

 The word polymorphism means having
many forms.

» Refers to a programming language's
ability to process objects differently

* depending on their data type or class

« An operation may exhibit different
behaviours in different instances. The
behaviour depends upon the types of
data used in the operation.

« Ability for objects of different classes
related by inheritance to respond
differently to the same member
function call

30

Prepared by Sharika T R, SNGCE

e
In Shopping malls behave like Customer
In Bus behave like Passenger
In School behave like Student

At Home behave like Son

N

hape

Draw()

Qrawl)

Draw()

31

1: Class or Interface
2: Access Modifiers

+ Default
1: Abstract Class « Public
23‘IAbstrrf:ct Method - Abstraction « Private
3: Interface * Protected

4

00PS
Concepts

Encapsulation

1: Parent Child Concept
2: Type of Inheritance
Inheritance "+ Single
* Multilevel

1: Compile Time or Method Overloading
2: Runtime or Method Overriding

Polymorphism

OO concepts review

Flexibility

Encapsulation

32

Prepared by Sharika T R, SNGCE

Object Modeling using Unified Modeling Language

UML

Unified Modeling Language(UML)

A standardized modeling language consisting of an
integrated set of diagrams,

developed to help system and software developers
for specifying, visualizing, constructing, and documenting
the artifacts of software systems.

UML is a pictorial language used to make software blueprints

UML can be described as a general purpose visual modeling
language to visualize, specify, construct, and document software
system.

UML is not a programming language but tools can be used to
generate code in various languages using UML diagrams.

34

Prepared by Sharika T R, SNGCE

UML Diagram Types

UML Diagram Type

Structural Diagrams Behavioral Diagrams
(e Diuge'j:':mhe Deployment Diagram Acfivity Diagram Use Case Diagram

Object Diagram Component Diagram

Sequence Diagram Diagram

Interaction Overview Timing Diagram
Diagram 9 ar

35

» UML diagrams are broadly classified as structure
diagrams and behaviour diagrams.
» Structure Diagrams : Capture static aspects or structure
of a system
» Behaviour Diagrams : Capture dynamic aspects or
behavior ofthe system

36

Prepared by Sharika T R, SNGCE

CLASS DIAGRAM

Create instance

—_ Bobby

Properti Method: Property Valuves
Color Sit Color: Yellow

Eye Color Lay Down Eye Color: Brown
Height Shake Height: 17 in
Length Come Length: 35in
Weight Weight: 24 pounds

Methods
Sit

Lay Down
Shake

Come

38

Prepared by Sharika T R, SNGCE

Class diagram

» Using class diagram, we can create the static structure of
a system by showing the system's classes, their
attributes, operations (or methods).

» Class diagrams helps us to identify relationship between
different classes or objects.

MyClass
+attibute? : int
-attribute2 : float
#attribute3 : Circle
+op1{in p1 : bool, in p2) : String

-op2(input p3 : int) : float
#op3out p6): Classt”

Class diagram

» Class Name - The name of the class
appears in the first partition.

. MyClass
» Class Attributes eatiibted < int
> Attributes are shown in the second partition. -attribute? float
> The attribute type is shown after the colon. #attributed : Circle
> Attributes map onto member variables (data |+api(inp1: bool inp2) : String
members) in code. -op2{input p3 : int) : float
» Class Operations (Methods) #op3{out p6): Classt”

» Operations are shown in the third partition. They
are services the class provides.

> The return type of a method is shown after the
colon at the end of the method signature.

» The data type of method parameters are shown 40
after the colon following the parameter name.

Prepared by Sharika T R, SNGCE

» The +, - and # symbols before
an attribute = and operation
name in a class denote the
visibility of the attribute and
operation.

« + denotes public attributes or
operations

« - denotes private attributes or
operations

« # denotes protected attributes or
operations

MyClass

+attribute] : int
-attribute? : float
Hattribute3 : Circle

+op1{in p1 : bool, in p2) : String

-op2{input p3 : int) : float
#op3out p6) : Classt”

41

Parameter Directionality

» Each parameter in an operation (method) may be denoted as in,
out or in-out which specifies its direction with respect to the caller.

» This directionality is shown before the parameter name.

* inout: the parameter comes with a
value and after executing the called
object, the resulting value is returned
to the caller object.

*in: the parameter comes with a
value and after executing the called
object, the resulting value is not
returned to the caller object. (*)

eout: the parameter doesn't come
with a value and after executing the

called object, the resulting value is Possed to op?2 by the caller, and possioly
returned to the caller object. modified by op2 and is passed back

Fassed to opl oy the caller

" MyClassName

+attib ste ; int

#ath-lwtaSl ::ﬂ-::imm

+op1(in p1 : boolean, in p2): Sting
L a=2(inout p3 : int) : float
#np:i(cxipﬁ]: Classg”

Mot set by the caller but is modified by op3, and
is passed back out

Prepared by Sharika T R, SNGCE

Relationship Between Classes

UML is not just about
pretty pictures. If used e
correctly, UML precisely

0.*
0.
conveys how code i”‘ |
should be implemented “ _ Airplane
from diagrams.

If precisely interpreted, Association Directed Reflexive Multiplicity

the implemented code Asscoation Assciation
will correctly reflect the
intent of the designer_ Library Library Fixed Account Printer
1
1
1.7 I
Books Books Bank Account Printer Setup
43
Aggregation Composition Inheritance Realization

Relationship Between Classes- Dependency

» A dependency means the relation between two or more classes in
which a change in one may force changes in the other.

» Dependency indicates that one class depends on another.
» A dashed line with an open arrow

Ciaset Classl
File

-name : String

-owner : String Output Device

+create (n: Mame, o :User) -——- -~~~ —~-~-~~~~ > e

+delete () Fiilio ol

+display (d : Output Device) 44

+executel)

Prepared by Sharika T R, SNGCE

Relationship Between Classes- Generalization

» A generalization (inheritance) helps to connect a subclass to its
superclass.

» A sub-class is inherited from its superclass.

» Class diagram allows inheriting from multiple superclasses.

» A solid line with a hollow arrowhead that point from the child to
the parent class

-name : String

-owner : String Output Device
+create (n: Name,o:User) F——————~—-—————-— >
+delete ()

+display (d : Ouiput Device)

+display(s : String)

SuperClass

+execute()

Printer Display Monitor
-ready -color
-buffer -brightness

Subclass1 Subclass2 +fromFeed() ~contrast
+ineFeed() -graphicsMemory
+printLine(s : String) +setBrightness()
+display(s : String) +setContrast() 5
+setColor()

+display(s : String)

Relationship Between Classes- Asssociation

» This kind of relationship represents static relationships between classes A
and B.

» Eg: A Person lives at an location

» It should be named to indicate the role played by the class attached at the
end of the association path.

» A solid line connecting two classes

= Address
Student | Person
Studies] | - street : String
- name: String - city : String
, + doSomething() -2ip : String
e
$ + toString() : String
46

Prepared by Sharika T R, SNGCE

Relationship Between Classes- Multiplicity

» Multiplicity means how many objects of each class take part Im“the
relationships

»Exactly one - 1

»Zero orone - 0..1

»Many - 0..* or *

»One or more - 1..*

»Exact Number - e.g. 3.4 0r 6

»Or a complex relationship - e.g. 0..1, 3..4, 6.* would mean any number of
objects other than 2 or 5

Hight FrequentFlyer
flighthiumber : Integer 0% passengers firsthame : Strling
departureTime | Date : lastiame | String
flightDuration : Minutes = 60 frequentFlyerhumber : String

Studies

delayFlight (nurmberOfMinutes : Minutes)
gethrrivalTime () : Date

Relationship Between Classes- Aggregation

» Aggregation is a special type of association that models a whole- part relationship between
aggregate and its parts.

» Forexample, the class college is made up of one or more student.

» In aggregation, the contained classes are never totally dependent on the lifecycle of the
container.

» Here, the college class will remain even if the student is not available.

» A solid line with an unfilled diamond at the association end connected to the class of
composite

48

Prepared by Sharika T R, SNGCE

o
o

<o
Student > Registeredin_~| (Cjass

Order Line *Ispartof g Qrder

49

Relationship Between Classes- Composition

» The composition is a special type of aggregation which denotes strong ownership between
two classes when one classis a part of another class.

» A college has many departments and many students.
» The departments of the college can't exist without the college itself.

» This means “Departments” are owned by the college. Students can exist without the college, the
ownership of students are not in the college alone.

» Students can look for a new college if the college doesn't exist.
» A solid line with a filled diamond at the association connected to the class of composite.

s Cusst
—-ﬂ *1

50

Prepared by Sharika T R, SNGCE

{composition}

Department
College " |
1 *
1
{aggregation}
*
Student
51
Bank = u
— ATM Machine class diagram
+address O]
+manages() AT
+maintains()
Customer +location
+managedby
+name
::ggress I +identifies()
+card number - —
+pin
ATM Transactions
+werifyPassword() —)
coun " .
Has |1 Poe— . Account Transaction E:d;% Lzl
1.2 1
+balance . f o
+deposit) “+post balance
+withdraw()
createTransaction() +modifies()

Current Account

+account no.

Saving Account

Sawvings-Checking

+balance

“+withdraw()

i

+account no.
+balance

Prepared by Sharika T R, SNGCE

USE CASE DIAGRAM

53
Use case diagram

» A UML use case diagram is the primary form of system/software
requirements for a new software program underdeveloped.

» Use cases specify the expected behavior (what), and not the
exact method of making it happen (how).

» Use cases once specified can be denoted both textual and visual
representation (i.e. use case diagram).

» A key concept of use case modeling is that it helps us design a
system from the end user's perspective.

» It is an effective technique for communicating system behavior in
the user's terms by specifying all externally visible system

behavior.
54

Prepared by Sharika T R, SNGCE

» It only summarizes some of the relationships between
use cases, actors, and systems.

» It does not show the order in which steps are performed
to achieve the goals of each use case.

» These days use case modeling is often associated with
UML, although it has been introduced before UML
existed. Its brief history is as follow:

» In 1986, Ivar Jacobson first formulated textual and visual

modeling techniques for specifying use cases.

» In 1992 his co-authored book Object-Oriented Software
Engineering - A Use Case Driven Approach helped to
popularize the technique for capturing functional requirements,
especially in software development.

Prepared by Sharika T R, SNGCE

» Use case diagrams are typically developed in the early
stage of development

0 Specify the context of a system

a Capture the requirements of a system

0 Validate a systems architecture

a Drive implementation and generate test cases

a Developed by analysts together with domain experts

57

!ysLm !oun!ory -

Association
\

p
®, ®,
Actor = = =— » .
Cellular Phone External Phone
Company
i ™ — Use Case

Customer !

Prepared by Sharika T R, SNGCE

Bank ATM

— Check Balances

Repair

% L — Deposit Funds
N—] Withdraw Cash
Customer
] Transfer Funds
&
Technician .

Bank

59

» Actor

>

Someone interacts with use case (system
function).

Named by noun.
Actor plays a role in the business

Similar to the concept of user, but a user can
play different roles

For example:

» A prof. can be instructorand also researcher

» plays 2 roles with two systems

Actor triggers use case(s).

Actor has a responsibility toward the system
(inputs), and Actor has expectations from the
system (outputs).

Actor

60

Prepared by Sharika T R, SNGCE

» Use Case

» System function (process - automated or manual)
» Named by verb + Noun (or Noun Phrase).

» Each Actor must be linked to a use case, while some use cases may not
be linked to actors.

| UseCase)

» Communication Link/ Association

» The participation of an actor in a use case is shown by connecting an
actor to a use case by a solid link.

» Actors may be connected to use cases by associations, indicating that the
actor and the use case communicate with one another using messages.

Prepared by Sharika T R, SNGCE

» Boundary of system

» The system boundary is potentially the entire system as defined in the
requirements document.

» For large and complex systems, each module may be the system
boundary.

» For example, for an ERP system for an organization, each of the modules
such as personnel, payroll, accounting, etc. R —

System
System Boundary
I

Actor = = = » —
,,,,,,, oo @ exdarion

63

Structuring Use Diagram with Relationships

» There can be 5 relationship types in a use case diagram.
» Association between actor and use case
» Generalization of an actor
» Extend between two use cases
» Include between two use cases
» Generalization of a use case

64

Prepared by Sharika T R, SNGCE

Association between Actors and usecase

» An actor must be associated with %
at least one use case. = .

» An actor can be associated with
multiple use cases.

» Multiple actors can be associated
with a single use case.

Supplier

Bank

Customer
' Employee

65

Generalization of Actors

» Generalization of an actor means that one actor can inherit the
role of the other actor.

» The descendant inherits all the use cases of the ancestor.
» The descendant has one or more use cases that are specific to

that role. jQ\ /Qi

Customer Bank
Employee

T

MRFC
Customer 66

A generalized acfor in an use case diagram

Prepared by Sharika T R, SNGCE

Extend Relationship between two Use Cases

» The <<extend>> use case O 3

inserting additional action -\[— e f
) Account

/f\ /’/

sequences into the base use-
case sequence. Customer VYBanK
--<<e)d%nd».__ Employee

» The extending use case is 4
dependent on the extended
(base) use case. ¢ Amount over 10,000
+orAge over 55

» The extending use case is /4 R
usually optional and can be

triggered conditionally. /\ %

» The extended (base) use case &«
Customer

must be meaningful on its own. 67

/

Include Relationship between two Use Cases

» The time to use the <<include>> relationship is after you have
completed the first cut description of all your main Use Cases.

» Include relationship implies one use case includes the behaviour
of another use case in its sequence of events and actions

» The main reason for this is to reuse the common actions across
multiple use cases.

» In some situations, this is done to simplify complex behaviours.

» The base use case is incomplete without the included use
case.

» The included use case is mandatory and not optional.

68

Prepared by Sharika T R, SNGCE

Open
Account

: Amount over 10.000
or Age over 55 : Bank
- -—-rTr--=-- Employee

]
1
& — — ==extendss ——— Cg:rl‘lli;':;te

==zinclude==

-~

Customer
" -

-~
-
-

] Update
—_——— =zinclude==— — —
Balance

@ .
. Convert
Currency
/ \

MRFC
Customer

69

Generalization of a use case

» A generalization relationship means that a child use case
inherits the behavior and meaning of the parent use
case.

» The child may add or override the behavior of the parent.

70

Prepared by Sharika T R, SNGCE

» The name of an actor or a use case must be meaningful
and relevantto the system.

» Interaction of an actor with the use case must be defined
clearly and in an understandable way.

» Annotations must be used wherever they are required.

» If a use case or an actor has multiple relationships, then
only significant interactions must be displayed.

7

How to Identify Actors

» The following questions can help you identify the actors of your
system (Schneider and Winters - 1998):

Who uses the system?

Who installs the system?

Who starts up the system?

Who maintains the system?

Who shuts down the system?

What other systems use this system?

Who gets information from this system?

Who provides information to the system?

Does anything happen automatically at a present time?

SN N N N

72

Prepared by Sharika T R, SNGCE

How to Identify Use Cases

» The following questions can be asked to identify use
cases, once your actors have been identified (Schneider
and Winters - 1998)

v What functions will the actor want from the system?

v Does the system store information? What actors will create,
read, update or delete this information?

v Does the system need to notify an actor about changes in the
internal state?

v Are there any external events the system must know about?
What actor informs the system of those events?

73

Use Case diagram example-Online Shopping

«Subsystem»

Online Shopping %

«Services
wincludexs \
| |

Authentication
e
Make
Purchase
Identity

: «include» Provider

. X

Credit

Payment
Service

PayPal

Registered
% Customer

Web
Customer

New
Customer

Checkout

Client
Register

74

Prepared by Sharika T R, SNGCE

ATM System

——

System
Startup
% -

—

Operator w
Shutdown

——

.—'-''_‘_‘—\-L
Customer Invalid
« inclucke » PIN
4 A «extena »
. & %

<fr’?ﬂ P&c!im
T

Bank

Withdrawal

75

Check Book Availability

Check Valid Memb : s m
eck Valid Member i irmi
incl : «<include=> Check Book Limit

Issue Book

<<jnclude==

I/ ==include=»

Maintain Records

) Member
Librarian

Non_Teaching_Staff

Student Teaching_Staff

76

Prepared by Sharika T R, SNGCE

INTERACTION DIAGRAM

77
Interaction diagram

» Interaction diagram are used in UML to establish communication
between objects.

» It does not manipulate the data associated with the particular
communication path.

» Mostly focus on message passing and how these messages make
up one functionality of a system.

» The critical component in an interaction diagram is lifeline and
messages.

» Interaction diagrams capture the dynamic behavior of any system

Prepared by Sharika T R, SNGCE

Sequence Collaboration

S Diagranm Timing Diagram

79

Notation of Interaction Diagrams

» Lifeline

» A lifeline represents a single

participant in an interaction. g

» It describes how an instance of a |
specific classifier participates in e

the interaction. |

» Name(optional) - It is used to refer SR s

the lifeline within a specific

interaction. Ee—

» Type - name of a classifier of which | |

the lifeline represents an instance.

80

Prepared by Sharika T R, SNGCE

Purpose of Interaction Diagrams

» Used to represent the dynamic behavior of a system
» Describes message flow in the system

» Visualizes the communication and sequence of message
passing in the system

» Describe structural aspects of various objects in the
system

» Represents ordered sequence of interactions within a
system

81

Different types of Interaction Diagrams

1. Sequence diagram

— Purpose - To visualize the sequence of a message flow in the
system

— Shows the interaction between two lifelines
2. Collaboration diagram
— Also called as a communication diagram
— Shows how various lifelines in the system connects.
3. Timing diagram
— Focus on the instance at which a message is sent from one

object to another object.
82

Prepared by Sharika T R, SNGCE

1. Sequence Diagram

» A Sequence Diagram simply depicts interaction between
objects in a sequential order.

» The purpose of a sequence diagram in UML is to
visualize the sequence of a message flow in the system

» Messages — Communication between objects is depicted
using messages.

» The messages appear in a sequential order on the
lifeline.

83
* In a sequence diagram, a lifeline is represented by a vertical bar.
» Alifeline represents an individual participant in a sequence
diagram

+ A lifeline will usually have a rectangle containing its object name

+ A message flow between two or more objects is represented
using a vertical dotted line which extends across the bottom of the
page.

* In a sequence diagram, different types of messages and
operators are used

* In a sequence diagram, iteration and branching are also used.

Prepared by Sharika T R, SNGCE

Message Name

Synchronous message

Asynchronous message

Return message

Object creation
Object destruction

Found message

Lost message

Messages used

Meaning

The sender of a message keeps waiting for the
receiver to return control from the message
execution.

The sender does not wait for a return from the
receiver; instead, it continues the execution of
a next message.

The receiver of an earlier message returns the
focus of control to the sender.

The sender creates an instance of a classifier.
The sender destroys the created instance.

The sender of the message is outside the scope
of interaction.

The message never reaches the destination,
and itis lost in the interaction.

85

Sequence Diagram- Example

Cust_2: Bank_2 :
Customer Bank
: 1: Synchronous :
! Message 1
b >
! T
5 2 : Asynchronous
: Messgae !
r »
: 3 : <=create>>
: - Participant
' 5 : Self Messgae : Creation Message
EEES e e —> Insurance Agent
' 4: Participant ;
' Deletion Message o
6 : Reply
H Message H
e H

><

86

Prepared by Sharika T R, SNGCE

Synchronous Messages

» A synchronous message waits
for a reply before the
interaction can move forward.

» The sender waits until the | ,
receiver has completed the D
processing of the message. 2: Applcaon Opened

» The caller continues only when
it knows that the receiver has
processed the previous
message.

User Device

1 Open Application

87
Asynchronous Messages

» An asynchronous message
does not wait for a reply User Device
from the receiver. | |

» The interaction moves |
forward irrespective of the 1 Weloome Message
receiver processing the -+
previous message or not. U

Prepared by Sharika T R, SNGCE

Create message

» We use a Create message|
to instantiate a new object in
the sequence diagram. N e o
» There are situations when a A — =
particular message call i
requires the creation of an |
object.

Delete Message

» We use a Delete Message to
delete an object. Ordor Order 1
» When an object is deallocated "~
memory or is destroyed within 7
the system we use the Delete

Message symbol. ot ><
» It destroys the occurrence of the

objectin the system.

Prepared by Sharika T R, SNGCE

Self Message

 Certain scenarios might arise where the object needs to
send a message to itself.

| User | Device Lifeline
1 : Open Application :

[
L]
]

Device wants to access its webcam

»
>

Reply Message

- Reply messages are used to show the message being
sent from the receiver to the sender.

User |

Device |
1 1 Open Application
2 Access Webcam

S L]
LI

A scenariowhere areply message is used

Prepared by Sharika T R, SNGCE

Found Message

« AFound message is used to representa scenariowhere
an unknown source sends the message.

User | opeviee | Lifeline1
1 - Open Application i
[] |
2 : Access Webcam
3 . Hardware Failure

Ascenario where a found message is used o3

Lost Message

» A Lost message is used to representa scenario where the
recipient is not known to the system.

User

Device

1: Open Application ‘

[’ |
2 Access Webcam j
i

rs

3 : Warning

Ascenariowherealost message isused 94

Prepared by Sharika T R, SNGCE

sequence diagram for an emotion based Music Player

User Device Database
1: Open
Application » __
2 . ACCess L
Webcam _:j
3 : Get Photo
— 4 : Detect face —
i L 2 . Retrieve Mood :
— 7 : Display Mood H———————————————————————------f':- E]
: 6 Mood T
._!_. ! > i
i ! 8 : Retrieve Music r-l
P 10-Playlist____________ L -
b 9 - Generated
] Playlist

95

Benefits of a Sequence Diagram

Sequence diagrams are used to explore any real
application or a system.

Sequence diagrams are used to represent message flow
from one object to another object.

Sequence diagrams are easier to maintain.
Sequence diagrams are easier to generate.

Sequence diagrams can be easily updated according to
the changes within a system.

Sequence diagram allows reverse as well as forward
engineering. %

Prepared by Sharika T R, SNGCE

Drawbacks of a sequence diagram

Sequence diagrams can become complex when too many
lifelines are involved in the system.

If the order of message sequence is changed, then
incorrect results are produced.

Each sequence needs to be represented using different
message notation, which can be a little complex.

The type of message decides the type of sequence inside
the diagram

2. Collaboration Diagram

» Collaboration represents the
relationships and interactions
among software objects.

» They are used to understand)
the object architecture within Lilnet Lielne?
a system rather than the flow 2 Revero essage
of a message as in a
sequence diagram.

interaction CommunicationDiagram1)

1: Forward Message
—

Prepared by Sharika T R, SNGCE

Benefits of Collaboration Diagram

It is also called as a communication diagram.

It emphasizes the structural aspects of an interaction diagram - how lifeline
connects.

Its syntax is similar to that of sequence diagram except that lifeline don't have tails.

Messages passed over sequencing is indicated by numbering each message
hierarchically.

Compared to the sequence diagram communication diagram is semantically weak.
Object diagrams are special case of communication diagram.

It allows you to focus on the elements rather than focusing on the message flow as
described in the sequence diagram.

Sequence diagrams can be easily converted into a collaboration diagram as
collaboration diagrams are not very expressive.

W hile modelling collaboration diagrams w.r.t sequence diagrams, some information

may be lost. 99

Components of Collaboration Diagram

l'l. MESSAGE

Object:

Class name Object:
Class name

l 2. MES5AGE

Object:
Class name

Class name

100

Class name

Prepared by Sharika T R, SNGCE

interaction Student Management System /

Login System

Student Database

+Request Login

—

1: Fill the login details

Authentication System

+Request Access

: Return access

101

erence between Sequence and Collaboration Diagram

3 Dial number

Caller Exchanger Receiver Talk Call <
E i E 5 1.0fHook 5 p;
DfiHook R | | ! 2. Dial Tone
b DialTone | : E Exchange
Dial number " | ' 4.ring tone
! ! ! | v
| | Ring Tone | :
i | ' | Receiver
5 i '\ OnHook } 6. Off Hook
i i ! i 5. On Hook
! L OfHook | | v
Talk

102

Prepared by Sharika T R, SNGCE

3. Timing Diagram

Timing diagrams are used_to represent the || Reauirement | pegign
state of an object at a particular instance of
time.

It is used to denote the transformation of an
object from one form into another form.

Timing diagram does not contain notations
as required in the sequence and
collaboration diagram.

The flow between the software program at
various instances of time is represented
using a waveform.

Timing diagram can be used to keep track of
every change inside the system.

Development

103

Difference between Sequence and Collaboration

Diag

The sequence diagram represents the UML, = (Il BT E LT b IR Fe b e | e (=
which is used to visualize the sequence offlllle =l T=RR U FERE €Yo [T-CT=Va = T (o] YT el IS
calls in a system that is used to perform afllE=le BTGV TEN A TR0 e Uy A L lo) o) i [
specific functionality. objects and their interaction.

The collaboration diagram are used to
represent the structural organization of the
system and the messages that are sent and
received.

The sequence diagram are used to represent
the sequence of messages that are flowing
from one object to another.

The sequence diagram is used when time = (ol ETolEUTo] e [ETe | e o ST <6 BT o 1|
sequence is main focus. object organization is main focus.

The collaboration diagrams are bette
suited for depicting simpler interactions o
the smaller number of objects.

The sequence diagrams are better suited off
analysis activities.

104

Prepared by Sharika T R, SNGCE

ACTIVITY DIAGRAM

105

ACTIVITY DIAGRAM

ACTIVITY DIAGRAM is basically a flowchart to represent the flow
from one activity to another activity.

The activity can be described as an operation of the system

The basic purpose of activity diagrams is to capture the dynamic
behavior of the system

It is also called object-oriented flowchart

Activity diagrams are not only used for visualizing the dynamic
nature of a system, but they are also used to construct the
executable system by using forward and reverse engineering
techniques.

106

Prepared by Sharika T R, SNGCE

Basic components of an activity diagram

Action: A step in the activity where in the users or software
perform a given task.

Decision node: A conditional branch in the flow that is represented
by a diamond. It includes a single input and two or more outputs.

Control flows: Another name for the connectors that show the flow
between steps in the diagram.

Start node: Symbolizes the beginning of the activity. The start
node is represented by a black circle.

End node: Represents the final step in the activity. The end node
is represented by an outlined black circle.

107

Activity diagram symbols

Start symbol - Represents the beginning of a process or workflow
in an activity diagram.
Activity symbol - Indicates the activities that make up a modeled

process. These symbols, which include short descriptions within
the shape, are the main building blocks of an activity diagram.

Connector symbol - Shows the directional flow, or control flow, of
the activity.

: Connector
vt e

108

Prepared by Sharika T R, SNGCE

Joint symbol / Synchronization bar - Combines two concurrent
activities and re-introduces them to a flow where only one activity
occurs at a time. Represented with a thick vertical or horizontal
line.

Fork symbol - Splits a single activity flow into two concurrent
activities. Symbolized with multiple arrowed lines from a join.

Decision symbol - Represents a decision and always has at least
two paths branching out with condition text.

Joint symbol/ Decision
Synchronization Fork symbol symbol
bar

109

Note symbol - Allows the diagram creators or collaborators to
communicate additional messages that don't fit within the diagram
itself. Leave notes for added clarity and specification.

Send signal symbol - Indicates that a signal is being sent to a
receiving activity

Receive signal symbol - Demonstrates the acceptance of an
event. After the event is received, the flow that comes from this
action is completed.

Nt eyt > Send signal Receive signal
symbol symbol

110

Prepared by Sharika T R, SNGCE

* Flow final symbol - Represents the end of a specific process flow.
This symbol shouldn’t represent the end of all flows in an activity.
The flow final symbol should be placed at the end of a single
activity flow.

« Condition text - Placed next to a decision marker to let you know
under what condition an activity flow should split off in that
direction

« End symbol - Marks the end state of an activity and represents
the completion of all flows of a process.

Flow final 0
® symbol W] Condition text @ End symbol .

Activity diagram

Prepared by Sharika T R, SNGCE

Act|V|ty Diagram -

Check account

113

STATE CHART DIAGRAM

» The primary purpose of a state chart diagram is to model
interactive systems and define each and every state of an object.

 State chart diagrams are also referred to as State machines and
state diagrams.

A state machine consists of states, linked by transitions. A state is
a condition of an object in which it performs some activity or waits
for an event

cancel order

confirm
| arrival

request

Prepared by Sharika T R, SNGCE

Notation and Symbol for State Machine

. initial
state

<> decision-box

@ final-state

UML state diagram notations 15

Initial state - The initial state symbol is used to indicate
the beginning of a state machine diagram.

Final state - This symbol is used to indicate the end of a
state machine diagram.

Decision box - It contains a condition. Depending upon
the result of an evaluated guard condition, a new path is
taken for program execution.

Transition - A transition is a change in one state into

another state which is occurred because of some event. A
transition causes a change in the state of an object.

Prepared by Sharika T R, SNGCE

State box

 States represent situations during the life of an object.
* It is denoted using a rectangle with round corners.

 The name of a state is written inside the rounded
rectangle.

* A state can be either active or inactive.

 When a state is in the working mode, it is active, as soon
as it stops executing and transits into another state, the
previous state becomes inactive, and the current state
becomes active.

17

Transition

-

cancel order

request confirm

shipment

118

